Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 9, Pages 1512–1523 (Mi zvmmf246)  

This article is cited in 2 scientific papers (total in 2 papers)

The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution

A. V. Bayev

Faculty of Physics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
References:
Abstract: The problem of solving a system of linear algebraic equations is examined. An application of the Lagrange principle to the optimal recovery in this problem is described. New optimal methods that use available information about the errors in the data and a priori information about the solution are proposed for solving such systems.
Key words: optimal recovery, system of linear algebraic equations.
Received: 22.12.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 9, Pages 1452–1463
DOI: https://doi.org/10.1134/S0965542507090072
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. V. Bayev, “The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a priori information about its solution”, Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007), 1512–1523; Comput. Math. Math. Phys., 47:9 (2007), 1452–1463
Citation in format AMSBIB
\Bibitem{Bay07}
\by A.~V.~Bayev
\paper The Lagrange principle in the problem of optimal inversion of linear operators in finite-dimensional spaces with a~priori information about its solution
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 9
\pages 1512--1523
\mathnet{http://mi.mathnet.ru/zvmmf246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2387660}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 9
\pages 1452--1463
\crossref{https://doi.org/10.1134/S0965542507090072}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34848859222}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf246
  • https://www.mathnet.ru/eng/zvmmf/v47/i9/p1512
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :194
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024