Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 4, Pages 98–101
DOI: https://doi.org/10.4213/faa3755
(Mi faa3755)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

On the Relative Projection Constants of Certain Classes of Subspaces of $l_\infty^{2n}$

O. M. Martynov

Zhukov Air and Space Defense Academy, Tver, Russia
Full-text PDF (381 kB) Citations (2)
References:
Abstract: Relative projection constants of certain classes of cubspaces of codimension 2 in $l_\infty^{2n}$ are found. The minimal projections under considerations are of two kinds, with unit norm and with norm larger than 1.
Keywords: projection operator, space, subspace, relative projection constant.
Received: 20.01.2020
Revised: 20.01.2020
Accepted: 30.05.2020
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 4, Pages 306–309
DOI: https://doi.org/10.1134/S0016266320040085
Bibliographic databases:
Document Type: Article
UDC: 513.88
MSC: 47A46
Language: Russian
Citation: O. M. Martynov, “On the Relative Projection Constants of Certain Classes of Subspaces of $l_\infty^{2n}$”, Funktsional. Anal. i Prilozhen., 54:4 (2020), 98–101; Funct. Anal. Appl., 54:4 (2020), 306–309
Citation in format AMSBIB
\Bibitem{Mar20}
\by O.~M.~Martynov
\paper On the Relative Projection Constants of Certain Classes of Subspaces of $l_\infty^{2n}$
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 4
\pages 98--101
\mathnet{http://mi.mathnet.ru/faa3755}
\crossref{https://doi.org/10.4213/faa3755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173027}
\elib{https://elibrary.ru/item.asp?id=46850228}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 4
\pages 306--309
\crossref{https://doi.org/10.1134/S0016266320040085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000656894500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108876409}
Linking options:
  • https://www.mathnet.ru/eng/faa3755
  • https://doi.org/10.4213/faa3755
  • https://www.mathnet.ru/eng/faa/v54/i4/p98
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :42
    References:80
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025