SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES
|
|
Introductory Words of AI Journey Team
|
5 |
|
Artificial intelligence in society A. L. Semenov
|
6–19 |
|
Probability calibration on the example of improving early cancer detection: a fuzzy set theory approach O. A. Filimonova, A. G. Ovsyannikov, N. V. Biryukova
|
20–27 |
|
Optimization of physics-informed neural networks for nonlinear Schrödinger equation I. A. Chuprov, J. Gao, D. S. Efremenko, E. A. Kazakov, F. A. Buzaev, V. Zemlyakov
|
28–38 |
|
Deep learning approach to classification of acoustic signals using information features P. V. Lysenko, I. A. Nasonov, A. A. Galyaev, L. M. Berlin
|
39–48 |
|
Adaptive spectral normalization for generative models E. A. Egorov, A. I. Rogachev
|
49–59 |
|
Deep metric learning: loss functions comparison R. L. Vasilev, A. G. Dyakonov
|
60–71 |
|
Spectral neural operators V. S. Fanaskov, I. V. Oseledets
|
72–79 |
|
A new computationally simple approach for implementing neural networks with output hard constraints A. V. Konstantinov, L. V. Utkin
|
80–90 |
|
Solving large-scale routing optimization problems with networks and only networks A. G. Soroka, A. V. Mesheryakov
|
91–98 |
|
Algorithms with gradient clipping for stochastic optimization with heavy-tailed noise M. Yu. Danilova
|
99–108 |
|
Towards discovery of the differential equations A. A. Hvatov, R. V. Titov
|
109–117 |
|
Towards efficient learning of GNN on high-dimensional multi-layered representations of tabular data A. V. Medvedev, A. G. Dyakonov
|
118–125 |
|
Activations and gradients compression for model-parallel training M. I. Rudakov, A. N. Beznosikov, Y. A. Kholodov, A. V. Gasnikov
|
126–137 |
|
About the possibility of recovering message based side on information about the original characters A. Malashina
|
138–149 |
|
Neural network approach to the problem of predicting interest rate anomalies under the influence of correlated noise G. A. Zotov, P. Lukianchenko
|
150–157 |
|
Min-max optimization over slowly time-varying graphs N. T. Nguyen, A. Rogozin, D. Metelev, A. Gasnikov
|
158–168 |
|
Automated system for analysis of OCT retina images development and testing L. E. Aksenova, K. D. Aksenov, E. V. Kozina, V. V. Myasnikova
|
169–176 |
|
Statistical online learning in recurrent and feedforward quantum neural networks S. V. Zuev
|
177–186 |
|
1-Dimensional topological invariants to estimate loss surface non-convexity D. S. Voronkova, S. A. Barannikov, E. V. Burnaev
|
187–195 |
|
Barcodes as summary of loss function topology S. A. Barannikov, A. A. Korotin, D. A. Oganesyan, D. I. Emtsev, E. V. Burnaev
|
196–211 |
|
Optimal analysis of method with batching for monotone stochastic finite-sum variational inequalities A. Pichugin, M. Pechin, A. Beznosikov, A. Savchenko, A. Gasnikov
|
212–224 |
|
Spidernet: fully connected residual network for fraud detection S. V. Afanasiev, A. A. Smirnova, D. M. Kotereva
|
225–234 |
|
Automating the temperament assessment of online social network users V. D. Oliseenko, A. O. Khlobystova, A. A. Korepanova, T. V. Tulupyeva
|
235–241 |
|
An explained artificial intelligence-based solution to identify depression severity symptoms using acoustic features S. A. Shalileh, A. O. Koptseva, T. I. Shishkovskaya, M. V. Khudyakova, O. V. Dragoy
|
242–249 |
|
Hierarchical method for cooperative multi-agent reinforcement learning in Markov decision processes V. È. Bol'shakov, A. N. Alfimtsev
|
250–261 |
|
Accessible Russian large language models: open-sourced models and instructive datasets for commercial applications D. Kosenko, Yu. Kuratov, D. Zharikova
|
262–269 |
|
Graph models for contextual intention prediction in dialog systems D. P. Kuznetsov, D. R. Ledneva
|
270–288 |
|
Neural networks for coordination analysis A. I. Predelina, S. Yu. Dulikov, A. M. Alexeyev
|
289–296 |
|
Text reuse detection in handwritten documents A. V. Grabovoy, M. S. Kaprielova, A. S. Kildyakov, I. O. Potyashin, T. B. Seyil, E. L. Finogeev, Yu. V. Chekhovich
|
297–307 |
|
Artificially generated text fragments search in academic documents G. M. Gritsai, A. V. Grabovoy, A. S. Kildyakov, Yu. V. Chekhovich
|
308–317 |
|
Eco4cast: Bridging predictive scheduling and cloud computing for reduction of carbon emissions for ML models training M. Tiutiulnikov, V. Lazarev, A. Korovin, N. Zakharenko, I. Doroshchenko, S. Budennyy
|
318–332 |
|
MTS Kion implicit contextualised sequential dataset for movie recommendation I. Safilo, D. Tikhonovich, A. V. Petrov, D. I. Ignatov
|
333–342 |
|
Optimal data splitting in distributed optimization for machine learning D. Medyakov, G. Molodtsov, A. Beznosikov, A. Gasnikov
|
343–354 |
|
Machine learning as a tool to accelerate the search for new materials for metal-ion batteries V. T. Osipov, M. I. Gongola, E. A. Morkhova, A. P. Nemudryi, A. A. Kabanov
|
355–363 |
|
Investigation of neural network algorithms for Human movement prediction based on LSTM and transformers S. V. Zhiganov, Yu. S. Ivanov, D. M. Grabar'
|
364–374 |
|
Safe pre-training of deep language models in a synthetic pseudo-language T. E. Gorbacheva, I. Yu. Bondarenko
|
375–384 |
|
Do we benefit from the categorization of the news flow in the stock price prediction problem? T. D. Kulikova, E. Yu. Kovtun, S. A. Budennyy
|
385–394 |
|
No two users are alike: Generating audiences with neural clustering for temporal point processes V. Zhuzhel, V. Grabar', N. Kaploukhaya, R. Rivera-Castro, L. Mironova, A. Zaytsev, E. Burnaev
|
395–416 |
|
ESGify: Automated classification of environmental, social and corporate governance risks A. Kazakov, S. Denisova, I. Barsola, E. Kalugina, I. Molchanova, I. Egorov, A. Kosterina, E. Tereshchenko, L. Shutikhina, I. Doroshchenko, N. Sotiriadi, S. Budennyy
|
417–430 |