Part 1. Plenary reports
|
|
A case study in proof-theoretic tetralateralism H. Wansing
|
13–23 |
|
Application of neural networks for recognition of conformational changes in protein structure by x-ray diffractograms of its single molecules on the example of bacteriorhodopsin photocycle G. A. Armeev, M. P. Kirpichnikov, G. M. Kobel'kov, A. V. Kudryavtsev, M. A. Lozhnikov, V. N. Novoseletsky, A. K. Shaitan, K. V. Shaitan
|
24–34 |
|
Machine learning of intelligent control systems A. I. Diveev
|
35–43 |
|
Artificial intelligence services in modern economy M. I. Lugachev, K. G. Skripkin, R. D. Gimranov
|
44–49 |
|
Automatic sentiment analysis of texts: problems and methods N. V. Lukashevich
|
50–61 |
|
Embedded vision: from objective to hardware implementation A. V. Shokurov
|
62–81 |
|
Brain-inspired new agi architectures S. A. Shumsky
|
82–89 |
|
Part 2. Mathematics and Computer Science
|
|
On the question of a functional system of automata with a superposition operation D. N. Babin
|
91–93 |
|
On a new algorithm for reaching consensus for stablecoins È. È. Gasanov, M. B. Suyunbekova
|
94–100 |
|
Process approach to modeling and verification of parallel programs A. M. Mironov
|
101–106 |
|
P-hypergraph design with simulated annealing I. E. Naumov, E. V. Khvorostukhina
|
107–111 |
|
Qualitative comparison of families of real functions A. P. Ryjov, A. K. Sinko
|
112–115 |
|
Cryptography based on topologically simple rings V. V. Tenzina
|
116–120 |
|
Computer science, computer and computational complexity V. N. Chubarikov
|
121–128 |
|
Implementation of the modified rabiner's method for polychastic matrices on neural adders S. V. Shalagin, A. R. Nurutdinova
|
129–132 |
|
Part 3: Big Data Mining
|
|
Fast multiplication algorithms R. R. Aidagulov
|
134–139 |
|
Bigroup algebras and potter's theorem R. R. Aidagulov
|
140–145 |
|
Teaching the fundamental bases of artificial intelligence as the implementation of the concept of new scientific knowledge S. T. Glavatsky, I. G. Burykin
|
146–152 |
|
Dynamic formation and updating of the map of organic carbon stock in Russia as a task of big data mining O. M. Golozubov, O. V. Chernova
|
153–159 |
|
The adverse clinical outcome risk classifiers ñonstructing on clinical and demographic patient data B. E. Gornyi, A. P. Ryjov, A. S. Strogalov, A. A. Khusaenov, I. A. Shergin, D. A. Feshchenko, A. M. Abdullaev, A. V. Kontsevaya
|
160–163 |
|
Measurement of alcohol well-being in regions based on statistical information A. P. Ryjov, B. E. Gornyi, A. V. Zudin
|
164–169 |
|
The search system with both exact lexical matching and contextualized word representations common in between query and documents I. V. Tarlinskiy
|
170–172 |
|
Part 4: Natural Language Processing
|
|
Semantics of belief contexts in the natural language analysis I. Beskova
|
174–178 |
|
Cluster network approach to natural language analysis and its applications A. D. Bogomolova
|
179–184 |
|
The creation of pseudo-annotated data for word sense disambiguation using ensembles of models A. S. Bolshina
|
185–189 |
|
Automated analysis of family values of vkontakte users I. E. Kalabikhina, N. V. Lukashevich, E. P. Banin, K. V. Alibaeva
|
190–195 |
|
Three aspects of linguistic data consistency: estimation and interpretation E. A. Lyutikova, A. A. Gerasimova, D. D. Belova, K. A. Studenikina, A. S. Lyutikov
|
196–202 |
|
Semantic analysis of some types of sentences of road traffic law M. I. Menkin
|
203–207 |
|
Part 5. Artificial neural networks and machine intelligence
|
|
Data classification using interferential neural network model N. A. Babbysh
|
209–213 |
|
Artificial intelligence as a research tool for solving technical tasks in neurobiology studies D. S. Berezhnoy, T. K. Bergaliev
|
214–219 |
|
Hardware for neural networks D. A. Ivanov
|
220–224 |
|
Machine learning based oil pipeline diagnostics I. D. Katser, V. O. Kozitsin
|
225–228 |
|
The development of an integral system for the ai-based biosignal data processing and further perspectives of its use Yu. S. Kovalev, D. S. Berezhnoy, S. V. Sakhno, T. K. Bergaliev, M. A. Kiseleva
|
229–235 |
|
An open-source framework for anomaly detection and forecasting of technical systems V. O. Kozitsin, I. D. Katser
|
236–240 |
|
Combined application of recurrent neural networks and statistical methods for improved oceanographic data forecasting accuracy V. Yu. Kuz'min
|
241–245 |
|
Human pose estimation as a classification problem I. Pronichkin, M. Kumskov
|
246–249 |
|
Cnn networks using for person re-identification in urban scenes E. P. Suchkov, G. O. Alekseenko, K. V. Nalchadzhi
|
250–254 |
|
Deep learning-based automatic identification of minerals in images of polished sections A. V. Khvostikov, A. S. Krylov, D. M. Korshunov, M. A. Boguslavskiy
|
255–260 |
|
Part 6. Intelligent control, robots and biomechatronics systems
|
|
Application of a recurrent neural network to identify dynamics of a centrifuge-type stand G. S. Bugriy
|
262–266 |
|
Path planning of an autonomous robot in a maze with obstacles E. I. Zalilov, A. S. Dolgiy, A. V. Shokurov
|
267–272 |
|
Csoftware for registering eye movement Ya. Yu. Minyaylo, A. Yu. Komarovskiy, A. Kh. Krymshamkhalov
|
273–275 |
|
The application of the oculography for the flight simulation training devices acceleration effects objective evaluation P. Yu. Sukhochev, Ya. Yu. Minyaylo
|
276–281 |
|
Adaptation of motion capture technology to record a person's movements to create an avatar inside the interactive virtual environment V. V. Cherdanceva, G. S. Bugriy, S. V. Leonov, I. S. Polikanova, A. A. Yakushina, V. A. Chertopolokhov
|
282–286 |
|
Part 7. Neuromorphic artificial intelligence and cognitive systems
|
|
Novel object location behavioral task in mus musculus memory studies V. I. Alipov, K. A. Toropova, O. I. Ivashkina, K. V. Anokhin
|
288–293 |
|
Investigating the cognitive abilities of hooded crows using a set of tasks based on the aesop test E. A. Diffine, A. A. Smirnova
|
294–299 |
|
Life-long memory formation mechanisms in the mouse model of posttraumatic stress disorder T. A. Zamorina, K. A. Toropova, O. I. Ivashkina, K. V. Anokhin
|
300–305 |
|
Comparison of c-fos and arc genes expression patterns in mouse brain after contextual associative memory formation and retrieval L. S. Kazanskaya, O. I. Ivashkina, K. A. Toropova, K. V. Anokhin
|
306–310 |
|
Spiking neural network unsupervised learning algorithm SCoBUL and its application to extracting informative features from DVS camera signal M. V. Kiselev
|
311–315 |
|
Testing cognition in hooded crows using a new type of string-pulling task K. N. Kubenko, A. A. Smirnova
|
316–320 |
|
Doghouse: a new assay to probe spatiotemporal dynamics of brain-wide activity A. A. Lazutkin, S. Shuvaev
|
321–326 |
|
Neuromorphic artificial intelligence systems D. A. Larionov, D. A. Ivanov, M. V. Kiselev
|
327–331 |
|
Encoding of objects and space in hippocampus: the role of novelty and value of objects for cognitive specialization V. V. Plusnin, K. A. Toropova, O. I. Ivashkina, K. V. Anokhin
|
332–336 |
|
Extracting collective variables from multivariate neural activity of place cells N. A. Pospelov, V. P. Sotskov, K. V. Anokhin, S. K. Nechaev, A. S. Gorsky
|
337–340 |
|
Calcium activity of the retrosplenial cortex neurons during object and place recognition in mice O. S. Rogozhnikova, O. I. Ivashkina, K. A. Toropova, M. A. Solotyonkov, I. V. Fedotov, A. M. Zheltikov, K. V. Anokhin
|
341–345 |
|
Neuromorphic machine vision systems A. V. Teplyuk
|
346–350 |
|
The e ects of traumatic experience on the behavior, c-fos expression and functional connections in the mouse brain resting state network K. A. Toropova, O. I. Ivashkina, A. A. Ivanova, E. V. Konovalova, K. V. Anokhin
|
351–353 |
|
On one method for modeling cognitively limited inferences of formulas D. N. Fedyanin
|
354–358 |
|
Part 8. Human-oriented artificial intelligence and neural interface technologies
|
|
Artificial intelligence enhanced by modelling B. Thalheim
|
360–366 |
|
Philosophical analysis of restrictions of using artificial intelligence systems in education E. V. Bryzgalina
|
367–370 |
|
The great equalizer. can a voice assistant moderate group interaction? F. N. Vinokurov, K. A. Panov
|
371–376 |
|
Ethical regulation of artificial intelligence technologies N. Yu. Klyueva
|
377–379 |
|
Perspectives and constraints on neural network models of neurobiological processes A. A. Onuchin
|
380–384 |
|
Problems of hybrid intelligence systems development A. P. Ryjov
|
385–389 |
|
Future with ai: careless or workless E. D. Sadovskaya, F. N. Vinokurov
|
390–395 |
|
Assessing creativity: using neural networks for analysis of graphical solutions in computer testing I. L. Uglanova, Y. S. Gelver, S. V. Tarasov, D. A. Gracheva
|
396–399 |
|
Can we replace "manual labor": creativity assessment in a digital environment without the involvement of experts I. L. Uglanova, S. V. Tarasov, S. M. Churbanova, E. A. Orel
|
400–405 |
|
Part 9. Knowledge representation and reasoning automation
|
|
Towards relevant multilatticce logic O. M. Grigoriev, Ya. I. Peturkhin
|
407–410 |
|
Epistemic logics for ignorance representation E. Kubyshkina, M. Petrolo
|
411–412 |
|
Kripke+degroot: an epistemic-doxastic model for social influence V. V. Dolgorukov
|
413–416 |
|
Artificial intelligence in finance: for or against human R. A. Kokorev, O. N. Lavrentieva, I. B. Surkova, M. S. Tolstel, V. S. Trushina
|
417–421 |
|
Logic of existence judgements as an instrument of knowledge representation and automatic inference verification V. I. Markin
|
422–426 |
|
Artificial intelligence as a tool for building personal investment routes for technological projects A. A. Morozov, E. B. Tishchenko
|
427–431 |
|
Economic analysis of the digital ecosystems' participants behavior A. A. Morosanova
|
432–437 |
|
Minimal logic for technology analysis V. I. Shalack
|
438–441 |