MATHEMATICS
|
|
On the asymptotics for the fundamental solution of the ordinary fractional order differential equation with constant coefficients L. H. Gadzova
|
7–11 |
|
The linear inverse problem for the equation of Trikomi in three-dimensional space S. Z. Djamalov
|
12–17 |
|
About the linear Diophantine equations and ways of their solutions A. H. Kodzokov, Z. O. Beslaneev, A. L. Nagorov, M. B. Tkhamokov
|
18–23 |
|
On the uniquness of the solution to the boundary value problem for a mixed degenerate hyperbolic equation Z. V. Kudaeva
|
24–27 |
|
Gellerstedt problem for a parabolic-hyperbolic equation degenerating type and order Z. S. Madrakhimova
|
28–33 |
|
Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area M. Mamajonov, S. M. Mamajonov, Kh. B. Mamadalieva
|
34–42 |
|
MATHEMATICAL MODELING
|
|
Mathematical modeling of nonlinear oscillators hereditarity example Duffing oscillator with fractional derivatives in the Riemann-Liouville I. V. Drobysheva
|
43–49 |
|
Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction V. A. Kim
|
50–54 |
|
On a dynamic hereditarity system that simulates the economic cycle D. V. Makarov
|
55–61 |
|
Sustainable development of society: synergetic approach V. A. Shevlokov
|
62–67 |
|
INFORMATION AND COMPUTATION TECHNOLOGIES
|
|
Calculation of entropy Karachay-Balkar texts and simulation of phrases M. B. Tkhamokov, A. L. Nagorov, Z. O. Beslaneev, A. H. Kodzokov
|
68–72 |
|
TEACHING MATERIALS
|
|
Solutions of mathematical olympiad «Vitus Bering - 2016» G. M. Vodinchar, O. K. Zhdanova, A. S. Perezhogin, O. V. Sheremetyeva, T. P. Yakovleva
|
73–78 |
|
þHow to learn to solve problems with a parameter? O. K. Zhdanova
|
79–89 |
|
The crediting of work of section «Functions» (for secondary vocational education) T. P. Yakovleva
|
90–113 |