|
2-years impact-factor Math-Net.Ru of «Algebra i Analiz» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
0.874 |
103 |
90 |
40 |
5.6% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. F. Vakulenko, “O razlozheniyakh po proizvedeniyam garmonicheskikh polinomov v ${\mathbb R}^3$”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 36–42 |
→ |
On algebras of harmonic quaternion fields in ${\mathbb R}^3$ M. I. Belishev, A. F. Vakulenko Algebra i Analiz, 31:1 (2019), 1–17
|
|
2. |
Orevkov S.Yu., “Algebraically Unrealizable Complex Orientations of Plane Real Pseudoholomorphic Curves”, Geom. Funct. Anal., 31:4 (2021), 930–947 |
→ |
Separating semigroup of hyperelliptic curves and of genus 3 curves S. Yu. Orevkov Algebra i Analiz, 31:1 (2019), 108–113
|
|
3. |
D. A. Polyakova, Trends in Mathematics, Operator Theory and Differential Equations, 2021, 163 |
→ |
General solution of homogeneous convolution equation in spaces of ultradifferentiable functions D. A. Polyakova Algebra i Analiz, 31:1 (2019), 114–142
|
|
4. |
B. N. Khabibullin, “Globalnaya ogranichennost funktsii konechnogo poryadka, ogranichennykh vne malykh mnozhestv”, Matem. sb., 212:11 (2021), 116–127 |
→ |
Balayage of measures and subharmonic functions on a system of rays. I. Classic case B. N. Khabibullin, A. V. Shmelyova Algebra i Analiz, 31:1 (2019), 156–210
|
5. |
A. E. Salimova, B. N. Khabibullin, “Rost tselykh funktsii eksponentsialnogo tipa i kharakteristiki raspredelenii tochek vdol pryamoi na kompleksnoi ploskosti”, Ufimsk. matem. zhurn., 13:3 (2021), 116–128 |
→ |
Balayage of measures and subharmonic functions on a system of rays. I. Classic case B. N. Khabibullin, A. V. Shmelyova Algebra i Analiz, 31:1 (2019), 156–210
|
6. |
B. N. Khabibullin, E. B. Menshikova, “Balayage of measures with respect to polynomials and logarithmic kernels on the complex plane”, Lobachevskii J. Math., 42:12 (2021), 2823–2833 |
→ |
Balayage of measures and subharmonic functions on a system of rays. I. Classic case B. N. Khabibullin, A. V. Shmelyova Algebra i Analiz, 31:1 (2019), 156–210
|
7. |
B. N. Khabibullin, “The logarithm of the modulus of an entire function as a minorant for a subharmonic function outside a small exceptional set”, Azerbaijan J. Math., 11:2 (2021), 48–59 |
→ |
Balayage of measures and subharmonic functions on a system of rays. I. Classic case B. N. Khabibullin, A. V. Shmelyova Algebra i Analiz, 31:1 (2019), 156–210
|
|
8. |
V. G. Tkachev, “The universality of one half in commutative nonassociative algebras with identities”, J. Algebra, 569 (2021), 466–510 |
→ |
Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs V. G. Tkachev Algebra i Analiz, 31:2 (2019), 51–74
|
9. |
M. Chen, “Fractional-order adaptive p-Laplace equation-based art image edge detection”, Adv. Math. Phys., 2021 (2021), 2337712 |
→ |
Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs V. G. Tkachev Algebra i Analiz, 31:2 (2019), 51–74
|
|
10. |
M. Chen, “Fractional-order adaptive p-Laplace equation-based art image edge detection”, Adv. Math. Phys., 2021 (2021), 2337712 |
→ |
Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function M. Akman, J. Lewis, A. Vogel Algebra i Analiz, 31:2 (2019), 75–87
|
|
11. |
I. I. Skrypnik, M. V. Voitovych, “B-1 classes of De Giorgi–Ladyzhenskaya–Ural'tseva and their applications to elliptic and parabolic equations with generalized Orlicz growth conditions”, Nonlinear Anal.-Theory Methods Appl., 202 (2021), 112135 |
→ |
Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point Yu. A. Alkhutov, M. D. Surnachev Algebra i Analiz, 31:2 (2019), 88–117
|
12. |
Yu. A. Alkhutov, M. D. Surnachev, “Vnutrennyaya i granichnaya nepreryvnost $p(x)$-garmonicheskikh funktsii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 49, K yubileyu Grigoriya Aleksandrovicha SEREGINA, Zap. nauchn. sem. POMI, 508, POMI, SPb., 2021, 7–38 |
→ |
Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point Yu. A. Alkhutov, M. D. Surnachev Algebra i Analiz, 31:2 (2019), 88–117
|
13. |
G. Mingione, V. Radulescu, “Recent developments in problems with nonstandard growth and nonuniform ellipticity”, J. Math. Anal. Appl., 501:1, SI (2021), 125197 |
→ |
Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point Yu. A. Alkhutov, M. D. Surnachev Algebra i Analiz, 31:2 (2019), 88–117
|
14. |
M. A. Shan, I. I. Skrypnik, M. V. Voitovych, “Harnack's inequality for quasilinear elliptic equations with generalized Orlicz growth”, Electron. J. Differ. Equ., 2021 |
→ |
Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point Yu. A. Alkhutov, M. D. Surnachev Algebra i Analiz, 31:2 (2019), 88–117
|
15. |
Maria A. Shan, Igor I. Skrypnik, Mykhailo V. Voitovych, “Harnack's inequality for quasilinear elliptic equations with generalized Orlicz growth”, ejde, 2021:01-104 (2021), 27 |
→ |
Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point Yu. A. Alkhutov, M. D. Surnachev Algebra i Analiz, 31:2 (2019), 88–117
|
16. |
Yu. A. Alkhutov, M. D. Surnachev, “The Boundary Behavior of a Solution to the Dirichlet Problem for a Linear Degenerate Second Order Elliptic Equation”, J Math Sci, 259:2 (2021), 109 |
→ |
Behavior of solutions of the Dirichlet Problem for the $ p(x)$-Laplacian at a boundary point Yu. A. Alkhutov, M. D. Surnachev Algebra i Analiz, 31:2 (2019), 88–117
|
|
17. |
Y. Miyanishi, G. Rozenblum, “Spectral properties of the Neumann-Poincare operator in 3D elasticity”, Int. Math. Res. Notices, 2021:11 (2021), 8715–8740 |
→ |
Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry Y. Miyanishi, G. Rozenblum Algebra i Analiz, 31:2 (2019), 248–268
|
18. |
K. Ando, H. Kang, Y. Miyanishi, M. Putinar, “Spectral analysis of Neumann-Poincare operator”, Rev. Roum. Math. Pures Appl., 66:3-4 (2021), 545–575 |
→ |
Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry Y. Miyanishi, G. Rozenblum Algebra i Analiz, 31:2 (2019), 248–268
|
19. |
K. Ando, H. Kang, Y. Miyanishi, T. Nakazawa, “Surface localization of plasmons in three dimensions and convexity”, SIAM J. Appl. Math., 81:3 (2021), 1020–1033 |
→ |
Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry Y. Miyanishi, G. Rozenblum Algebra i Analiz, 31:2 (2019), 248–268
|
20. |
Lorenzo Baldassari, Pierre Millien, Alice L. Vanel, “Modal approximation for plasmonic resonators in the time domain: the scalar case”, Partial Differ. Equ. Appl., 2:4 (2021) |
→ |
Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry Y. Miyanishi, G. Rozenblum Algebra i Analiz, 31:2 (2019), 248–268
|
|
|
Total publications: |
1939 |
Scientific articles: |
1836 |
Authors: |
1405 |
Citations: |
14094 |
Cited articles: |
1453 |
|
Impact Factor Web of Science |
|
for 2023:
0.700 |
|
for 2022:
0.800 |
|
for 2021:
0.934 |
|
for 2020:
0.804 |
|
for 2019:
0.800 |
|
for 2018:
1.000 |
|
for 2017:
0.604 |
|
for 2016:
0.438 |
|
for 2015:
0.485 |
|
for 2014:
0.641 |
|
for 2013:
0.561 |
|
for 2012:
0.460 |
|
for 2011:
0.287 |
|
for 2010:
0.347 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.425 |
|
2023 |
SJR |
0.350 |
|
2022 |
SJR |
0.431 |
|
2021 |
SJR |
0.325 |
|
2020 |
SJR |
0.328 |
|
2019 |
SJR |
0.458 |
|
2018 |
CiteScore |
0.580 |
|
2018 |
SJR |
0.632 |
|
2017 |
CiteScore |
0.340 |
|
2017 |
SNIP |
0.519 |
|
2017 |
SJR |
0.335 |
|
2016 |
CiteScore |
0.230 |
|
2016 |
SNIP |
0.398 |
|
2016 |
SJR |
0.215 |
|
2015 |
CiteScore |
0.280 |
|
2015 |
SNIP |
0.722 |
|
2015 |
IPP |
0.245 |
|
2015 |
SJR |
0.366 |
|
2014 |
CiteScore |
0.330 |
|
2014 |
SNIP |
0.690 |
|
2014 |
IPP |
0.336 |
|
2014 |
SJR |
0.317 |
|
2013 |
SNIP |
0.591 |
|
2013 |
IPP |
0.306 |
|
2013 |
SJR |
0.277 |
|
2012 |
SNIP |
0.728 |
|
2012 |
IPP |
0.260 |
|
2012 |
SJR |
0.205 |
|