|
2-years impact-factor Math-Net.Ru of «Contemporary Mathematics. Fundamental Directions» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
2021 |
0.600 |
40 |
24 |
13 |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. V. Kostin, “Asimptoticheskie na psevdosferakh i ugol parallelnosti”, Izv. vuzov. Matem., 2021, № 6, 25–34 |
→ |
Interpretation of geometry on manifolds as a geometry in a space with projective metric A. Artikbaev, S. S. Saitova CMFD, 65:1 (2019), 1–10
|
|
2. |
Marakhimov Avazjon Rakhimovich, Khudaybergenov Kabul Kadirbergenovich, Advances in Intelligent Systems and Computing, 1323, 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020), 2021, 47 |
→ |
A fuzzy MLP approach for identification of nonlinear systems A. R. Marakhimov, K. K. Khudaybergenov CMFD, 65:1 (2019), 44–53
|
3. |
Varlamova Lyudmila Petrovna, Studies in Computational Intelligence, 912, Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, 2021, 171 |
→ |
A fuzzy MLP approach for identification of nonlinear systems A. R. Marakhimov, K. K. Khudaybergenov CMFD, 65:1 (2019), 44–53
|
|
4. |
E. N. Sattorov, F. E. Ermamatova, “O vosstanovlenii reshenii obobschennoi sistemy Koshi–Rimana
v mnogomernoi prostranstvennoi oblasti po ikh znacheniyam na kuske
granitsy etoi oblasti”, Matem. zametki, 110:3 (2021), 405–423 |
→ |
Carleman's formula for solutions of the generalized Cauchy–Riemann system in multidimensional spatial domain E. N. Sattorov, F. E. Ermamatova CMFD, 65:1 (2019), 95–108
|
5. |
E. N. Sattorov, F. E. Ermamatova, “Cauchy problem for a generalized Cauchy-Riemann system in a multidimensional bounded spatial domain”, Differ. Equ. , 57:1 (2021), 86–99 |
→ |
Carleman's formula for solutions of the generalized Cauchy–Riemann system in multidimensional spatial domain E. N. Sattorov, F. E. Ermamatova CMFD, 65:1 (2019), 95–108
|
6. |
E. N. Sattorov, F. E. Ermamatova, “O prodolzhenii reshenii obobschennoi sistemy Koshi–Rimana v mnogomernoi prostranstvennoi beskonechnoi oblasti”, Izv. vuzov. Matem., 2021, № 2, 27–43 |
→ |
Carleman's formula for solutions of the generalized Cauchy–Riemann system in multidimensional spatial domain E. N. Sattorov, F. E. Ermamatova CMFD, 65:1 (2019), 95–108
|
|
7. |
N. V. Zaitseva, “Edinstvennost resheniya nelokalnoi zadachi dlya odnogo
elliptiko-giperbolicheskogo uravneniya s singulyarnymi koeffitsientami”, Matem. zametki, 109:4 (2021), 544–551 |
→ |
General Euler–Poisson–Darboux equation and hyperbolic $B$-potentials E. L. Shishkina CMFD, 65:2 (2019), 157–338
|
8. |
Elina Shishkina, Springer Proceedings in Mathematics & Statistics, 357, Operator Theory and Harmonic Analysis, 2021, 507 |
→ |
General Euler–Poisson–Darboux equation and hyperbolic $B$-potentials E. L. Shishkina CMFD, 65:2 (2019), 157–338
|
|
9. |
V. I. Voititskii, N. D. Kopachevskii, “O normalnykh kolebaniyakh mayatnika s polostyu, chastichno zapolnennoi idealnoi neszhimaemoi zhidkostyu”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 190, VINITI RAN, M., 2021, 34–49 |
→ |
On oscillations of connected pendulums with cavities filled with homogeneous fluids N. D. Kopachevsky, V. I. Voytitsky CMFD, 65:3 (2019), 434–512
|
10. |
V. I. Voytitsky, “Strong dissipative hydrodynamical systems and the operator pencil of S. Krein”, Lobachevskii J. Math., 42:5, SI (2021), 1094–1112 |
→ |
On oscillations of connected pendulums with cavities filled with homogeneous fluids N. D. Kopachevsky, V. I. Voytitsky CMFD, 65:3 (2019), 434–512
|
|
11. |
Faminskii A.V., “Initial-Boundary Value Problems on a Half-Strip For the Modified Zakharov-Kuznetsov Equation”, J. Evol. Equ., 21:2 (2021), 1263–1298 |
→ |
On inner regularity of solutions of two-dimensional Zakharov–Kuznetsov equation A. V. Faminskii CMFD, 65:3 (2019), 513–546
|
12. |
Ya.-H. Liang, K.-J. Wang, “Generalized variational principle for the fractal (2+1)-dimensional Zakharov-Kuznetsov equation in quantum magneto-plasmas”, Symmetry-Basel, 13:6 (2021), 1022 |
→ |
On inner regularity of solutions of two-dimensional Zakharov–Kuznetsov equation A. V. Faminskii CMFD, 65:3 (2019), 513–546
|
|
13. |
Boris S Bardin, Alexey A Rachkov, “On periodic motions of a body with an internal moving mass on a rough horizontal plane in the case of anisotropic friction”, J. Phys.: Conf. Ser., 1959:1 (2021), 012005 |
→ |
On translational rectilinear motion of a solid body carrying a movable inner mass B. S. Bardin, A. S. Panev CMFD, 65:4 (2019), 557–592
|
|
14. |
N. A. Larkin, J. Luchesi, “Initial-boundary value problems for nonlinear dispersive equations of higher orders posed on bounded intervals with general boundary conditions”, Mathematics, 9:2 (2021), 165 |
→ |
On initial-boundary value problem on semiaxis for generalized Kawahara equation A. V. Faminskii, E. V. Martynov CMFD, 65:4 (2019), 683–699
|
|
15. |
V. N. Denisov, “On stabilization of the Poisson integral and Tikhonov-Stieltjes means: two-sided estimate”, Dokl. Math. , 103:1 (2021), 32–34 |
→ |
On large-time behavior of solutions of parabolic equations V. N. Denisov CMFD, 66:1 (2020), 1–155
|
|
16. |
H. Essaouini, P. Capodanno, “Mathematical study of the small oscillations of a spherical layer of viscoelastic fluid about a rigid spherical core in the gravitational field”, Z. Angew. Math. Phys., 72:3 (2021), 109 |
→ |
To the problem on small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem D. A. Zakora, N. D. Kopachevsky CMFD, 66:2 (2020), 182–208
|
17. |
E. V. Plokhaya, “On small motions of hydrodynamic systems containing a viscoelastic fluid”, Lobachevskii J. Math., 42:5, SI (2021), 996–1013 |
→ |
To the problem on small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem D. A. Zakora, N. D. Kopachevsky CMFD, 66:2 (2020), 182–208
|
|
18. |
M. Muratov, Yu. Pashkova, B.-Z. Rubshtein, “Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions”, Lobachevskii J Math, 42:5 (2021), 949 |
→ |
Symmetric spaces of measurable functions: old and new advances M. A. Muratov, B.-Z. A. Rubshtein CMFD, 66:2 (2020), 221–271
|
|
19. |
S. E. Pastukhova, “$L^2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov chetvertogo poryadka”, Matem. sb., 212:1 (2021), 119–142 |
→ |
Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space S. E. Pastukhova CMFD, 66:2 (2020), 314–334
|
20. |
S. E. Pastukhova, “Improved Approximations of Resolvents in Homogenization of Fourth Order Operators”, J Math Sci, 255:4 (2021), 488 |
→ |
Resolvent approximations in $L^2$-norm for elliptic operators acting in a perforated space S. E. Pastukhova CMFD, 66:2 (2020), 314–334
|
|
|
Total publications: |
553 |
Scientific articles: |
546 |
Authors: |
626 |
Citations: |
3022 |
Cited articles: |
356 |
|
Scopus Metrics |
|
2023 |
CiteScore |
0.700 |
|
2023 |
SNIP |
0.523 |
|
2023 |
SJR |
0.302 |
|
2022 |
SJR |
0.314 |
|
2021 |
SJR |
0.357 |
|