|
2-years impact-factor Math-Net.Ru of «Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia» journal, 2023
|
2023
|
2022
|
2-years impact-factor Math-Net.Ru |
0.935
|
1.044
|
Annual citation index Math-Net.Ru |
0.227
|
0.139
|
2-years impact-factor Math-Net.Ru of the journal in 2023 is calculated
as the number of citations in 2023 to the scientific papers published during
2021–2022.
The table below contains the list of citations in 2023 to the papers
published in 2021–2022. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2023 |
0.935 |
215 |
201 |
90 |
7% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. T. Fomenko, V. V. Vedyushkina, “Billiardy i integriruemye sistemy”, UMN, 78:5(473) (2023), 93–176 |
→ |
Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases V. V. Vedyushkina, A. T. Fomenko Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 5–9
|
2. |
A. T. Fomenko, “Billiards of variable configuration and billiards with slipping in Hamiltonian geometry and topology”, Lobachevskii J. Math., 44:10 (2023), 4512 |
→ |
Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases V. V. Vedyushkina, A. T. Fomenko Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 5–9
|
3. |
A. A. Dokukin, O. V. Sen'ko, “New two-level machine learning method for evaluating the real characteristics of objects”, J. Comput. Syst. Sci. Int., 62:4 (2023), 619 |
→ |
Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases V. V. Vedyushkina, A. T. Fomenko Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 5–9
|
|
4. |
R. Kulaev, A. Urtaeva, “Spectral properties of a fourth-order differential operator on a network”, Math. Methods in App. Sciences, 46:14 (2023), 15743 |
→ |
On oscillation properties of self-adjoint boundary value problems of fourth order A. A. Vladimirov, A. A. Shkalikov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 10–15
|
5. |
N. P. Bondarenko, “Regularization and inverse spectral problems for differential operators with distribution coefficients”, Mathematics, 11:16 (2023), 3455 |
→ |
On oscillation properties of self-adjoint boundary value problems of fourth order A. A. Vladimirov, A. A. Shkalikov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 10–15
|
|
6. |
M. G. Grigoryan, A.A. Sargsyan, “On the existence and structure of universal functions for weighted spaces $L^1_\mu [0,1]$”, J. Math. Sci., 271:5 (2023), 644 |
→ |
On the existence and structure of universal functions M. G. Grigoryan Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 30–33
|
|
7. |
Yu. V. Tsarev, E. I. Ryzhkova, “Razrabotka oblachnogo prilozheniya dlya opredeleniya soderzhaniya formaldegida v atmosfernom vozdukhe po dannym sputnika Sentinel-5P”, Yuzhno-Sibirskii nauchnyi vestnik, 2023, № 6(52), 31 |
→ |
Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 34–39
|
8. |
N. Nefedov, E. Polezhaeva, N. Levashova, “Stabilization of the moving front solution of the reaction-diffusion-advection problem”, Axioms, 12:3 (2023), 253 |
→ |
Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 34–39
|
9. |
Yu. M. Timofeyev, V. P. Budak, Ya. A. Virolainen, T. B. Zhuravleva, I. V. Ptashnik, A. B. Uspensky, N. N. Filippov, N. E. Chubarova, “Russian investigations in the field of atmospheric radiation in 2019–2022”, Izv. Atmos. Ocean. Phys., 59:S3 (2023), S383 |
→ |
Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 34–39
|
10. |
V. V. Andreev, O. E. Bazhenov, B. D. Belan, P. N. Vargin, A. N. Gruzdev, N. F. Elansky, G. S. Zhamsueva, A. S. Zayakhanov, S. N. Kotelnikov, I. N. Kuznetsova, M. Yu. Kulikov, A. V. Nevzorov, V. A. Obolkin, O. V. Postylyakov, E. V. Rozanov, A. I. Skorokhod, A. A. Solomatnikova, E. V. Stepanov, Yu. M. Timofeev, A. M. Feigin, T. V. Khodzher, “Russian studies of atmospheric ozone and its precursors in 2019–2022”, Izv. Atmos. Ocean. Phys., 59:S3 (2023), S437 |
→ |
Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 34–39
|
11. |
V. V. Andreev, O. E. Bazhenov, B. D. Belan, P. N. Vargin, A. N. Gruzdev, N. F. Elansky, G. S. Zhamsueva, A. S. Zayakhanov, S. N. Kotel’nikov, I. N. Kuznezova, M. Yu. Kulikov, A. V. Nevzorov, V. A. Obolkin, O. V. Postylyakov, E. V. Rozanov, A. I. Skorokhod, A. A. Solomatnikova, E. V. Stepanov, Yu. M. Timofeyev, A. M. Feigin, T. V. Khodzher, “Russian Investigations of Atmospheric Ozone and its Precursors in 2019–2022”, Izvestiâ Akademii nauk SSSR. Fizika atmosfery i okeana, 59:7 (2023), 1034 |
→ |
Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 34–39
|
12. |
Yu. M. Timofeyev, V. P. Budak, Ya. A Virolainen, T. B. Zhuravleva, I. V. Ptashnik, A. B. Uspensky, N. N. Filippov, N. E. Chubarova, “Russian Investigations in the Field of Amtospheric Radiation in 2019–2022”, Izvestiâ Akademii nauk SSSR. Fizika atmosfery i okeana, 59:7 (2023), 976 |
→ |
Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution M. A. Davydova, N. F. Elansky, S. A. Zakharova, O. V. Postylyakov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 34–39
|
|
13. |
M. Yu. Vatolkin, “O spektre odnoi kvazidifferentsialnoi kraevoi zadachi vtorogo poryadka”, Izv. vuzov. Matem., 2023, № 1, 3–24 |
→ |
Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces A. M. Savchuk, I. V. Sadovnichaya Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 56–58
|
|
14. |
L. Beilina, E. Lindström, L. Frischauf, D. McKelvey, “Truncated SVD for applications in microwave thermometry”, Gas Dynamics with Applications in Industry and Life Sciences, Springer Proceedings in Mathematics & Statistics, 429, 2023, 143 |
→ |
Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies A. B. Samokhin, Yu. G. Smirnov Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 59–63
|
|
15. |
A. G. Chechkina, “O zadache Zaremby dlya $p$-ellipticheskogo uravneniya”, Matem. sb., 214:9 (2023), 144–160 |
→ |
Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation Yu. A. Alkhutov, G. A. Chechkin Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 3–6
|
16. |
Yu. A. Alkhutov, Ch. D. Apiche, M. A. Kisatov, A. G. Chechkina, “O povyshennoi summiruemosti gradienta reshenii zadachi Zaremby dlya uravneniya $p$-Laplasa”, Dokl. RAN. Matem., inform., prots. upr., 512 (2023), 47–51 |
→ |
Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation Yu. A. Alkhutov, G. A. Chechkin Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 3–6
|
17. |
Yu. A. Alkhutov, G. A. Chechkin, “On higher integrability of the gradient of a solution to the Zaremba problem for $p(\cdot)$-Laplace equation in a plane domain”, Lobachevskii J. Math., 44:8 (2023), 3197 |
→ |
Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation Yu. A. Alkhutov, G. A. Chechkin Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 3–6
|
18. |
Yu. A. Alkhutov, G. A. Chechkin, “The Boyarsky–Meyers inequality for the Zaremba problem for $p(\cdot)$-Laplacian”, J. Math. Sci., 274:4 (2023), 423 |
→ |
Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation Yu. A. Alkhutov, G. A. Chechkin Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 3–6
|
19. |
Z. Yang, “Animation character recognition and character intelligence analysis based on semantic ontology and Poisson equation”, Applied Mathematics and Nonlinear Sciences, 8:1 (2023), 1487 |
→ |
Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation Yu. A. Alkhutov, G. A. Chechkin Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 3–6
|
|
20. |
A. Tetenov, A. Kutlimuratov, “On the structure of self-affine Jordan arcs in $\mathbb{R}^2$”, Demonstratio Mathematica, 56:1 (2023), 20220228 |
→ |
Rigidity theorem for self-affine arcs A. V. Tetenov, O. A. Chelkanova Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 18–22
|
|
|
Total publications: |
484 |
Scientific articles: |
482 |
Authors: |
740 |
Citations: |
991 |
Cited articles: |
278 |
|
Impact Factor Web of Science |
|
for 2023:
0.500 |
|
for 2021:
0.486 |
|
for 2020:
0.619 |
|
for 2019:
0.548 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.589 |
|
2023 |
SJR |
0.458 |
|
2022 |
SJR |
0.444 |
|
2021 |
SJR |
0.385 |
|
2020 |
SJR |
0.765 |
|
2019 |
SJR |
0.607 |
|