|
2-years impact-factor Math-Net.Ru of «Journal of Siberian Federal University. Mathematics & Physics» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
0.553 |
150 |
83 |
47 |
12% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. Parfenov, A. Shlapunov, “On the stability phenomenon of the Navier-Stokes type equations for elliptic complexes”, Complex Var. Elliptic Equ., 66:6-7, SI (2021), 1122–1150 |
→ |
Navier–Stokes equations for elliptic complexes Azal Mera, Alexander A. Shlapunov, Nikolai Tarkhanov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 3–27
|
2. |
A. A. Shlapunov, N. Tarkhanov, “An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$”, Sib. elektron. matem. izv., 18:2 (2021), 1433–1466 |
→ |
Navier–Stokes equations for elliptic complexes Azal Mera, Alexander A. Shlapunov, Nikolai Tarkhanov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 3–27
|
3. |
Polkovnikov A., “An Open Mapping Theorem For Nonlinear Operator Equations Associated With Elliptic Complexes”, Appl. Anal., 2021 |
→ |
Navier–Stokes equations for elliptic complexes Azal Mera, Alexander A. Shlapunov, Nikolai Tarkhanov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 3–27
|
|
4. |
Azam A. Imomov, Erkin E. Tukhtaev, Applied Modeling Techniques and Data Analysis 2, 2021, 185 |
→ |
On application of slowly varying functions with remainder in the theory of Galton–Watson branching process Azam A. Imomov, Erkin E. Tukhtaev J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 51–57
|
|
5. |
Koppula K., Kedukodi B.S., Kuncham S.P., “on Perfect Ideals of Seminearrings”, Beitr. Algebr. Geom., 62:4 (2021), 823–842 |
→ |
Extensions of Boolean rings and nearrings Hamsa Nayak, Syam P. Kuncham, Babushri S. Kedukodi J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 58–67
|
|
6. |
M. Abdelhakem, Y. H. Youssri, “Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems”, Appl. Numer. Math., 169 (2021), 243–255 |
→ |
Pseudospectral methods for nonlinear pendulum equations Le Anh Nhat J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 79–84
|
|
7. |
V. M. Levin, E. S. Morokov, K. A. Valuev, “Lokalnye uprugie izmereniya v tverdykh telakh s ispolzovaniem tekhniki akusticheskogo transformera”, Pisma v ZhETF, 113:1 (2021), 68–73 |
→ |
Opto-acoustic and acoustic microscopy studies of microstructure, elasticity and defects in B$_4$C/C$_{60}$ and c-BN/C$_{60}$ nanocomposites Vyacheslav M. Prokhorov, Egor S. Morokov, Danila A. Ovsyannikov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 85–93
|
|
8. |
E. D. Krasnova, “The ecology of meromictic lakes in Russia. 2. Continental water bodies”, Water Resour., 48:4 (2021), 588–597 |
→ |
One-dimensional model for studying seasonal changes of vertical structure of salt lake Uchum Victor M. Belolipetskii, Svetlana N. Genova, Andrey G. Degermendzhy, Vladimir V. Zykov, Denis Yu. Rogozin J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 100–108
|
|
9. |
Zheng Ya., Fang Zh.B., “New Critical Curves For a Doubly Degenerate Parabolic Equation in Half-Line”, Appl. Anal., 2021 |
→ |
The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux Mersaid M. Aripov, Jakhongir R. Raimbekov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 112–124
|
10. |
M. M. Aripov, Sh. A. Sadullayeva, M. Z. Sayfullayeva, “To mathematical modeling of nonlinear problem biological population in nondivergent form with variable density”, International Conference on Analysis and Applied Mathematics (ICAAM 2020), AIP Conf. Proc., 2325, eds. A. Ashyralyev, C. Ashyralyyev, A. Erdogan, A. Lukashov, M. Sadybekov, Amer. Inst. Phys., 2021, 020064 |
→ |
The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux Mersaid M. Aripov, Jakhongir R. Raimbekov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 112–124
|
11. |
Mirsaid Aripov, Oybek Djabbarov, Shakhlo Sadullaeva, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 060008 |
→ |
The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux Mersaid M. Aripov, Jakhongir R. Raimbekov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 112–124
|
12. |
M Aripov, A S Matyakubov, J O Khasanov, M M Bobokandov, “Mathematical modeling of double nonlinear problem of reaction diffusion in not divergent form with a source and variable density”, J. Phys.: Conf. Ser., 2131:3 (2021), 032043 |
→ |
The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux Mersaid M. Aripov, Jakhongir R. Raimbekov J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 112–124
|
|
13. |
Alvarez M.A., “Degenerations of 8-Dimensional 2-Step Nilpotent Lie Algebras”, Algebr. Represent. Theory, 24:5 (2021), 1231–1243 |
→ |
The variety of nilpotent Tortkara algebras Ilya B. Gorshkov, Ivan Kaygorodov, Alexey A. Kytmanov, Mohamed A. Salim J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 173–184
|
14. |
N. Ismailov, I. Kaygorodov, F. Mashurov, “The algebraic and geometric classification of nilpotent assosymmetric algebras”, Algebr. Represent. Theory, 24:1 (2021), 135–148 |
→ |
The variety of nilpotent Tortkara algebras Ilya B. Gorshkov, Ivan Kaygorodov, Alexey A. Kytmanov, Mohamed A. Salim J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 173–184
|
15. |
I. Gorshkov, I. Kaygorodov, Yu. Popov, “Degenerations of Jordan algebras and “marginal” algebras”, Algebr. Colloq., 28:02 (2021), 281–294 |
→ |
The variety of nilpotent Tortkara algebras Ilya B. Gorshkov, Ivan Kaygorodov, Alexey A. Kytmanov, Mohamed A. Salim J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 173–184
|
16. |
Shirali Kadyrov, Farukh Mashurov, “Unified computational approach to nilpotent algebra classification problems”, Communications in Mathematics, 29:2 (2021), 215 |
→ |
The variety of nilpotent Tortkara algebras Ilya B. Gorshkov, Ivan Kaygorodov, Alexey A. Kytmanov, Mohamed A. Salim J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 173–184
|
|
17. |
L. Menniche, D. Benterki, I. Benchetta, “An efficient logarithmic barrier method for linear programming”, J. Inform. Optim. Science, 42:8 (2021), 1799–1813 |
→ |
Logarithmic barrier method via minorant function for linear programming Assma Leulmi, Soumia Leulmi J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 191–201
|
|
18. |
A S Lobasov, A V Minakov, “The investigation of the efficiency of oil displacing from the pore in the rock formation depending on the width and height of the pore using nanosuspension as a displacing agent”, J. Phys.: Conf. Ser., 2119:1 (2021), 012052 |
→ |
The study of ethanol and water mixing modes in the T-shaped micromixers Alexander S. Lobasov, Anna A. Shebeleva, Andrey V. Minakov J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 202–212
|
19. |
A S Lobasov, A V Minakov, “The investigation of the height effect of a slit microchannel with a textured wall on its hydrodynamic drag”, J. Phys.: Conf. Ser., 2119:1 (2021), 012050 |
→ |
The study of ethanol and water mixing modes in the T-shaped micromixers Alexander S. Lobasov, Anna A. Shebeleva, Andrey V. Minakov J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 202–212
|
|
20. |
Victor K. Andreev, Natalya L. Sobachkina, “Two-layer stationary flow in a cylindrical capillary taking into account changes in the internal energy of the interface”, Zhurn. SFU. Ser. Matem. i fiz., 14:4 (2021), 507–518 |
→ |
The influence of changes in the internal energy of the interface on a two-layer flow in a cylinder Evgeniy P. Magdenko J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 213–221
|
|
|
Total publications: |
1153 |
Scientific articles: |
1146 |
Authors: |
1477 |
Citations: |
1858 |
Cited articles: |
559 |
|
Impact Factor Web of Science |
|
for 2023:
0.400 |
|
Scopus Metrics |
|
2023 |
CiteScore |
0.900 |
|
2023 |
SNIP |
0.566 |
|
2023 |
SJR |
0.294 |
|
2022 |
SJR |
0.304 |
|
2021 |
SJR |
0.267 |
|
2020 |
SJR |
0.268 |
|
2019 |
SJR |
0.274 |
|
2018 |
CiteScore |
0.290 |
|
2018 |
SJR |
0.227 |
|
2017 |
CiteScore |
0.260 |
|
2017 |
SNIP |
0.575 |
|
2017 |
SJR |
0.247 |
|
2016 |
CiteScore |
0.220 |
|
2016 |
SNIP |
0.450 |
|
2016 |
SJR |
0.204 |
|
2015 |
CiteScore |
0.150 |
|
2015 |
SNIP |
0.470 |
|
2015 |
IPP |
0.109 |
|
2015 |
SJR |
0.141 |
|