|
2-years impact-factor Math-Net.Ru of «Regular and Chaotic Dynamics» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
1.944 |
90 |
175 |
54 |
8% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
Garcia R., Reznik D., Koiller J., “New Properties of Triangular Orbits in Elliptic Billiards”, Am. Math. Mon., 128:10 (2021), 898–910  |
→ |
Caustics of Poncelet Polygons and Classical Extremal Polynomials Vladimir Dragović, Milena Radnović Regul. Chaotic Dyn., 24:1 (2019), 1–35
|
2. |
V. Dragovic, V. Shramchenko, “Deformations of the Zolotarev polynomials and Painleve VI equations”, Lett. Math. Phys., 111:3 (2021), 75  |
→ |
Caustics of Poncelet Polygons and Classical Extremal Polynomials Vladimir Dragović, Milena Radnović Regul. Chaotic Dyn., 24:1 (2019), 1–35
|
3. |
Andrews G.E. Dragovic V. Radnovic M., “Combinatorics of Periodic Ellipsoidal Billiards”, Ramanujan J., 2021  |
→ |
Caustics of Poncelet Polygons and Classical Extremal Polynomials Vladimir Dragović, Milena Radnović Regul. Chaotic Dyn., 24:1 (2019), 1–35
|
4. |
Corentin Fierobe, “Complex Caustics of the Elliptic Billiard”, Arnold Math J., 7:1 (2021), 1  |
→ |
Caustics of Poncelet Polygons and Classical Extremal Polynomials Vladimir Dragović, Milena Radnović Regul. Chaotic Dyn., 24:1 (2019), 1–35
|
|
5. |
Podobryaev A.V., “Casimir Functions of Free Nilpotent Lie Groups of Steps 3 and 4”, J. Dyn. Control Syst., 27:4 (2021), 625–644  |
→ |
Sub-Finsler Geodesics on the Cartan Group Andrei A. Ardentov, Enrico Le Donne, Yuri L. Sachkov Regul. Chaotic Dyn., 24:1 (2019), 36–60
|
6. |
A. Montanari, D. Morbidelli, “Multiexponential maps in Carnot groups with applications to convexity and differentiability”, Ann. Mat. Pura Appl., 200:1 (2021), 253–272  |
→ |
Sub-Finsler Geodesics on the Cartan Group Andrei A. Ardentov, Enrico Le Donne, Yuri L. Sachkov Regul. Chaotic Dyn., 24:1 (2019), 36–60
|
7. |
Pozuelo J., Ritore M., “Pansu-Wulff Shapes in H-1”, Adv. Calc. Var., 2021  |
→ |
Sub-Finsler Geodesics on the Cartan Group Andrei A. Ardentov, Enrico Le Donne, Yuri L. Sachkov Regul. Chaotic Dyn., 24:1 (2019), 36–60
|
|
8. |
Q. Wang, “The n-vortex problem on a Riemann sphere”, Commun. Math. Phys., 385:1 (2021), 565–593  |
→ |
Vortex Pairs on the Triaxial Ellipsoid: Axis Equilibria Stability Jair Koiller, César Castilho, Adriano Regis Rodrigues Regul. Chaotic Dyn., 24:1 (2019), 61–79
|
|
9. |
Nikolay A. Kudryashov, “Lax Pairs and Rational Solutions of Similarity Reductions for
Kupershmidt and Sawada – Kotera Hierarchies”, Regul. Chaotic Dyn., 26:3 (2021), 271–292  |
→ |
Rational and Special Solutions for Some Painlevé Hierarchies Nikolay A. Kudryashov Regul. Chaotic Dyn., 24:1 (2019), 90–100
|
10. |
Sh. Chen, Yu. Li, M. Jiang, B. Guan, Ya. Liu, F. Bu, “Abundant traveling wave solutions to an intrinsic fractional discrete nonlinear electrical transmission line”, Results Phys., 28 (2021), 104587  |
→ |
Rational and Special Solutions for Some Painlevé Hierarchies Nikolay A. Kudryashov Regul. Chaotic Dyn., 24:1 (2019), 90–100
|
|
11. |
Klas Modin, Milo Viviani, “Integrability of Point-Vortex Dynamics via Symplectic Reduction: A Survey”, Arnold Math J., 7:3 (2021), 357  |
→ |
Integrability and Chaos in Vortex Lattice Dynamics Alexander A. Kilin, Lizaveta M. Artemova Regul. Chaotic Dyn., 24:1 (2019), 101–113
|
|
12. |
I. Bizyaev, S. Bolotin, I. Mamaev, “Normal forms and averaging in an acceleration problem in nonholonomic mechanics”, Chaos, 31:1 (2021), 013132  |
→ |
The Dynamics of a Chaplygin Sleigh with an Elastic Internal Rotor Vitaliy Fedonyuk, Phanindra Tallapragada Regul. Chaotic Dyn., 24:1 (2019), 114–126
|
13. |
Alexander Kilin, Elena Pivovarova, 2021 International Conference "Nonlinearity, Information and Robotics" (NIR), 2021, 1  |
→ |
The Dynamics of a Chaplygin Sleigh with an Elastic Internal Rotor Vitaliy Fedonyuk, Phanindra Tallapragada Regul. Chaotic Dyn., 24:1 (2019), 114–126
|
|
14. |
M. M. A. Khater, D. Lu, “Analytical versus numerical solutions of the nonlinear fractional time-space telegraph equation”, Mod. Phys. Lett. B, 35:19 (2021), 2150324  |
→ |
On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance Boris S. Bardin, Evgeniya A. Chekina Regul. Chaotic Dyn., 24:2 (2019), 127–144
|
15. |
Sh. Islam, M. N. Alam, M. Fayz-Al-Asad, C. Tunc, “An analytical technique for solving new computational solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering”, J. Appl. Comput. Mech., 7:2 (2021), 715–726  |
→ |
On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance Boris S. Bardin, Evgeniya A. Chekina Regul. Chaotic Dyn., 24:2 (2019), 127–144
|
16. |
M. M. A. Khater, R. A. M. Attia, A. Bekir, D. Lu, “Optical soliton structure of the sub-10-fs-pulse propagation model”, J. Opt.-India, 50:1 (2021), 109–119  |
→ |
On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance Boris S. Bardin, Evgeniya A. Chekina Regul. Chaotic Dyn., 24:2 (2019), 127–144
|
17. |
E. V. Barinova, I. V. Belokonov, I. A. Timbai, “Preventing Resonant Motion Modes for Low-Altitude CubeSat Nanosatellites”, Gyroscopy Navig., 12:4 (2021), 350  |
→ |
On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance Boris S. Bardin, Evgeniya A. Chekina Regul. Chaotic Dyn., 24:2 (2019), 127–144
|
|
18. |
V. Putkaradze, S. Rogers, “Numerical simulations of a rolling ball robot actuated by internal point masses”, Numer. Algebr. Control Optim., 11:2 (2021), 143–207  |
→ |
On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses Vakhtang Putkaradze, Stuart M. Rogers Regul. Chaotic Dyn., 24:2 (2019), 145–170
|
19. |
Alexander Kilin, Elena Pivovarova, 2021 International Conference "Nonlinearity, Information and Robotics" (NIR), 2021, 1  |
→ |
On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses Vakhtang Putkaradze, Stuart M. Rogers Regul. Chaotic Dyn., 24:2 (2019), 145–170
|
|
20. |
O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous
Hamiltonian System in the Case of Two Identical
Integer or Half-Integer Frequencies”, Rus. J. Nonlin. Dyn., 17:1 (2021), 77–102  |
→ |
On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance Olga V. Kholostova Regul. Chaotic Dyn., 24:3 (2019), 235–265
|
|
|
Total publications: |
1285 |
Scientific articles: |
1120 |
Authors: |
1152 |
Citations: |
10054 |
Cited articles: |
947 |
 |
Impact Factor Web of Science |
|
for 2023:
0.800 |
|
for 2022:
1.400 |
|
for 2021:
1.667 |
|
for 2020:
1.421 |
|
for 2019:
1.285 |
|
for 2018:
0.933 |
|
for 2017:
1.383 |
|
for 2016:
1.562 |
|
for 2014:
0.860 |
|
for 2013:
0.925 |
|
for 2012:
0.742 |
|
for 2011:
0.644 |
|
for 2010:
0.529 |
|
for 2009:
0.725 |
|
for 2008:
0.568 |
|
for 2007:
0.420 |
|
for 2006:
0.485 |
|
for 2005:
0.465 |
 |
Scopus Metrics |
|
2024 |
SJR |
0.312 |
|
2023 |
CiteScore |
2.500 |
|
2023 |
SNIP |
0.738 |
|
2023 |
SJR |
0.384 |
|
2022 |
SJR |
0.399 |
|
2021 |
SJR |
0.522 |
|
2020 |
SJR |
0.466 |
|
2019 |
SJR |
0.811 |
|
2018 |
CiteScore |
1.340 |
|
2018 |
SJR |
0.591 |
|
2017 |
CiteScore |
1.390 |
|
2017 |
SNIP |
1.191 |
|
2017 |
SJR |
0.808 |
|
2016 |
CiteScore |
2.130 |
|
2016 |
SNIP |
1.751 |
|
2016 |
SJR |
1.045 |
|
2015 |
CiteScore |
1.820 |
|
2015 |
SNIP |
1.396 |
|
2015 |
IPP |
1.720 |
|
2015 |
SJR |
0.728 |
|
2014 |
CiteScore |
0.840 |
|
2014 |
SNIP |
1.156 |
|
2014 |
IPP |
0.854 |
|
2014 |
SJR |
0.497 |
|
2013 |
SNIP |
1.149 |
|
2013 |
IPP |
0.769 |
|
2013 |
SJR |
0.541 |
|
2012 |
SNIP |
0.950 |
|
2012 |
IPP |
0.693 |
|
2012 |
SJR |
0.616 |
|