|
2-years impact-factor Math-Net.Ru of «Sibirskii Zhurnal Industrial'noi Matematiki» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
1.045 |
89 |
93 |
46 |
11.8% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
M. S. Aswathy, S. Sarkar, “Frequency characteristics and phase dynamics of a stochastic vortex induced vibration system”, J. Sound Vibr., 509 (2021), 116230 |
→ |
Analysis of the effect of random noise on synchronization in a system of two coupled duffing oscillators A. A. Ivanov Sib. Zh. Ind. Mat., 22:1 (2019), 41–52
|
|
2. |
N N Nevedrova, A M Sanchaa, I O Shaparenko, “Geoelectrical structure and monitoring in fault zones of Uimon depression in Gorny Altai region using electromagnetic methods”, IOP Conf. Ser.: Earth Environ. Sci., 929:1 (2021), 012025 |
→ |
Solving direct problems of electrical resistivity tomography for media with high-conductivity irregular-shaped heterogeneities by an example of a multiple well platform A. V. Marinenko, M. I. Epov, V. V. Olenchenko Sib. Zh. Ind. Mat., 22:1 (2019), 63–73
|
|
3. |
N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Numerical modelling of the transition of infected cells and virions between two lymph nodes in a stochastic model of HIV-1 infection”, Russ. J. Numer. Anal. Math. Model, 36:5 (2021), 293–302 |
→ |
Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations N. V. Pertsev, B. Yu. Pichugin, K. K. Loginov Sib. Zh. Ind. Mat., 22:1 (2019), 74–89
|
|
4. |
I E Svetov, A P Polyakova, “The method of approximate inverse for the normal Radon transform operator”, J. Phys.: Conf. Ser., 1715:1 (2021), 012048 |
→ |
The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields I. E. Svetov, A. P. Polyakova, S. V. Maltseva Sib. Zh. Ind. Mat., 22:1 (2019), 104–115
|
5. |
A K Louis, S V Maltseva, A P Polyakova, T Schuster, I E Svetov, “On solving the slice-by-slice three-dimensional 2-tensor tomography problems using the approximate inverse method”, J. Phys.: Conf. Ser., 1715:1 (2021), 012036 |
→ |
The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields I. E. Svetov, A. P. Polyakova, S. V. Maltseva Sib. Zh. Ind. Mat., 22:1 (2019), 104–115
|
6. |
A P Polyakova, I E Svetov, “The singular value decomposition of the dynamic ray transforms operators acting on 2-tensor fields in ℝ2”, J. Phys.: Conf. Ser., 1715:1 (2021), 012040 |
→ |
The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields I. E. Svetov, A. P. Polyakova, S. V. Maltseva Sib. Zh. Ind. Mat., 22:1 (2019), 104–115
|
|
7. |
Rao Jixian, Lu Jizhou, Hu Ran, Chen Jindong, Cai Mao, 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2021, 394 |
→ |
The set of relative equilibria of a stationary orbital asymmetric gyrostat S. V. Chaikin Sib. Zh. Ind. Mat., 22:1 (2019), 116–121
|
|
8. |
O. F. Voropaeva, Ch. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, J. Appl. Mech. Tech. Phys., 62:3 (2021), 441–450 |
→ |
A numerical model of inflammation dynamics in the core of myocardial infarction O. F. Voropaeva, Ch. A. Tsgoev Sib. Zh. Ind. Mat., 22:2 (2019), 13–26
|
9. |
O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, D. V. Andornaya, “Sensitivity and identifiability analysis of COVID-19 pandemic models”, Vavilovskii Zhurnal Genet. Sel., 25:1 (2021), 82–91 |
→ |
A numerical model of inflammation dynamics in the core of myocardial infarction O. F. Voropaeva, Ch. A. Tsgoev Sib. Zh. Ind. Mat., 22:2 (2019), 13–26
|
10. |
M V Polovinkina, “On the effect of transition from a model with concentrated parameters to a model with distributed parameters”, J. Phys.: Conf. Ser., 1902:1 (2021), 012041 |
→ |
A numerical model of inflammation dynamics in the core of myocardial infarction O. F. Voropaeva, Ch. A. Tsgoev Sib. Zh. Ind. Mat., 22:2 (2019), 13–26
|
|
11. |
I. I. Lipatov, V. Yu. Liapidevskii, A. A. Chesnokov, “Forced oscillations of a pseudoshock in transonic gas flow in a diffuser”, Fluid Dyn., 56:6 (2021), 860–869 |
→ |
Flow regimes in a flat elastic channel in presence of a local change of wall stiffness V. Yu. Liapidevskii, A. K. Khe, A. A. Chesnokov Sib. Zh. Ind. Mat., 22:2 (2019), 37–48
|
|
12. |
D. T. Siraeva, “Invariant Solutions of the Gas Dynamics Equations From 4-Parameter Three-Dimensional Subalgebras Containing All Translations in Space and Pressure Translation”, Sib. Electron. Math. Rep., 18:2 (2021), 1639–1650 |
→ |
The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics D. T. Siraeva Sib. Zh. Ind. Mat., 22:2 (2019), 70–80
|
13. |
D Siraeva, “Invariant submodel of rank 1 and two families of exact solutions of gas dynamics equations with an equation of state of the special form”, J. Phys.: Conf. Ser., 2099:1 (2021), 012017 |
→ |
The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics D. T. Siraeva Sib. Zh. Ind. Mat., 22:2 (2019), 70–80
|
|
14. |
A. A. Papin, M. A. Tokareva, “On the Existence of Global Solution of the System of Equations of One-Dimensional Motion of a Viscous Liquid in a Deformable Viscous Porous Medium”, Sib. Electron. Math. Rep., 18:2 (2021), 1397–1422 |
→ |
Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium M. A. Tokareva, A. A. Papin Sib. Zh. Ind. Mat., 22:2 (2019), 81–93
|
15. |
A. A. Papin, M. A. Tokareva, “Mathematical Model of Fluids Motion in Poroelastic Snow-Ice Cover”, J. Sib. Fed. Univ.-Math. Phys., 14:1 (2021), 47–56 |
→ |
Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium M. A. Tokareva, A. A. Papin Sib. Zh. Ind. Mat., 22:2 (2019), 81–93
|
16. |
Margarita Tokareva, Alexander Papin, S. Bourekkadi, J. Abouchabaka, O. Omari, K. Slimani, “On the existence of global solution of the system of equations of liquid movement in porous medium”, E3S Web Conf., 234 (2021), 00095 |
→ |
Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium M. A. Tokareva, A. A. Papin Sib. Zh. Ind. Mat., 22:2 (2019), 81–93
|
17. |
R.A . Virts, “Numerical Solution of One Problem of Carbon Dioxide Injection into the Rock”, Izvestiya AltGU, 2021, no. 4(120), 81 |
→ |
Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium M. A. Tokareva, A. A. Papin Sib. Zh. Ind. Mat., 22:2 (2019), 81–93
|
18. |
R.A. Virts, “Numerical Solution of a Two-Dimensional Problem of Fluid Filtration in a Deformable Porous Medium”, Izvestiya AltGU, 2021, no. 1(117), 88 |
→ |
Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium M. A. Tokareva, A. A. Papin Sib. Zh. Ind. Mat., 22:2 (2019), 81–93
|
|
19. |
E. M. Rudoi, Kh. Itou, N. P. Lazarev, “Asimptoticheskoe obosnovanie modelei tonkikh vklyuchenii v uprugom tele
v ramkakh antiploskogo sdviga”, Sib. zhurn. industr. matem., 24:1 (2021), 103–119 |
→ |
A contact problem for a plate and a beam in presence of adhesion A. I. Furtsev Sib. Zh. Ind. Mat., 22:2 (2019), 105–117
|
|
20. |
M. V. Shamolin, “Nekotorye integriruemye neavtonomnye dinamicheskie sistemy s dissipatsiei”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 202, VINITI RAN, M., 2021, 99–113 |
→ |
Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium M. V. Shamolin Sib. Zh. Ind. Mat., 22:2 (2019), 118–131
|
|
|
Total publications: |
1283 |
Scientific articles: |
1260 |
Authors: |
1186 |
Citations: |
4181 |
Cited articles: |
866 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.561 |
|
2023 |
SJR |
0.348 |
|
2022 |
SJR |
0.417 |
|
2021 |
SJR |
0.391 |
|
2020 |
SJR |
0.396 |
|
2019 |
SJR |
0.200 |
|
2018 |
CiteScore |
0.580 |
|
2018 |
SNIP |
0.680 |
|
2018 |
SJR |
0.247 |
|
2017 |
CiteScore |
0.590 |
|
2017 |
SNIP |
0.793 |
|
2017 |
SJR |
0.292 |
|