|
2-years impact-factor Math-Net.Ru of «Sibirskii Zhurnal Vychislitel'noi Matematiki» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
0.935 |
62 |
58 |
30 |
6.9% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
N. Bouteraa, S. Benaikha, “Rezultaty po suschestvovaniyu dlya nelineinogo differentsialnogo vklyucheniya vtorogo poryadka s nelokalnymi granichnymi usloviyami”, Sib. zhurn. vychisl. matem., 24:1 (2021), 35–45  |
→ |
Positive periodic solutions for a class of fourth-order nonlinear differential equations N. Bouteraa, S. Benaicha Sib. Zh. Vychisl. Mat., 22:1 (2019), 1–14
|
|
2. |
Tianjie Wu, Shushi Zhang, Kefeng Zhu, Hongyun Ma, “The Impact of Applying Individually Perturbed Parametrization Tendency Scheme on the Simulated El Niño-Southern Oscillation in the Community Earth System Model”, Front. Earth Sci., 9 (2021)  |
→ |
The Kalman stochastic ensemble filter with transformation of perturbation ensemble E. G. Klimova Sib. Zh. Vychisl. Mat., 22:1 (2019), 27–40
|
|
3. |
V. D. Liseikin, V. I. Paasonen, “Adaptivnye setki i vysokotochnye skhemy dlya resheniya singulyarno-vozmuschennykh zadach”, Sib. zhurn. vychisl. matem., 24:1 (2021), 77–92  |
→ |
Compact difference schemes and layer-resolving grids for the numerical modeling of problems with boundary and interior layers V. D. Liseikin, V. I. Paasonen Sib. Zh. Vychisl. Mat., 22:1 (2019), 41–56
|
4. |
V. D. Liseikin, S. Karasuljic, A. V. Mukhortov, V. I. Paasonen, Lecture Notes in Computational Science and Engineering, 143, Numerical Geometry, Grid Generation and Scientific Computing, 2021, 227  |
→ |
Compact difference schemes and layer-resolving grids for the numerical modeling of problems with boundary and interior layers V. D. Liseikin, V. I. Paasonen Sib. Zh. Vychisl. Mat., 22:1 (2019), 41–56
|
|
5. |
A. Penenko, V. Penenko, E. Tsvetova, A. Gochakov, E. Pyanova, V. Konopleva, “Sensitivity operator framework for analyzing heterogeneous air quality monitoring systems”, Atmosphere, 12:12 (2021), 1697  |
→ |
The Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data A. V. Penenko Sib. Zh. Vychisl. Mat., 22:1 (2019), 57–79
|
6. |
A. V. Penenko, Zh. S. Mukatova, A. B. Salimova, “Numerical study of the coefficient identification algorithm based on ensembles of adjoint problem solutions for a production-destruction model”, Int. J. Nonlinear Sci. Numer. Simul., 22:5 (2021), 581–592  |
→ |
The Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data A. V. Penenko Sib. Zh. Vychisl. Mat., 22:1 (2019), 57–79
|
7. |
G. Gallo, A. Isoldi, D. Del Gatto, R. Savino, A. Capozzoli, C. Curcio, A. Liseno, “Numerical aspects of particle-in-cell simulations for plasma-motion modeling of electric thrusters”, Aerospace, 8:5 (2021), 138  |
→ |
The Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data A. V. Penenko Sib. Zh. Vychisl. Mat., 22:1 (2019), 57–79
|
|
8. |
I. V. Boikov, V. A. Ryazantsev, “Ob odnom priblizhennom metode resheniya obratnoi koeffitsientnoi zadachi dlya uravneniya teploprovodnosti”, Sib. zhurn. industr. matem., 24:2 (2021), 5–22  |
→ |
The study of an inverse boundary problem for the heat conduction equation A. I. Sidikova Sib. Zh. Vychisl. Mat., 22:1 (2019), 81–98
|
|
9. |
S. B. Sorokin, “Pryamoi metod resheniya obratnoi koeffitsientnoi zadachi dlya ellipticheskogo uravneniya s kusochno-postoyannymi koeffitsientami”, Sib. zhurn. industr. matem., 24:2 (2021), 134–147  |
→ |
An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation S. B. Sorokin Sib. Zh. Vychisl. Mat., 22:1 (2019), 99–117
|
10. |
A. L. Ushakov, “Chislennyi analiz smeshannoi kraevoi zadachi dlya uravneniya Sofi Zhermen”, J. Comp. Eng. Math., 8:1 (2021), 46–59  |
→ |
An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation S. B. Sorokin Sib. Zh. Vychisl. Mat., 22:1 (2019), 99–117
|
11. |
A. L. Ushakov, “Analiz smeshannoi kraevoi zadachi dlya uravneniya Puassona”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 13:1 (2021), 29–40  |
→ |
An efficient direct method for the numerical solution to the Cauchy problem for the Laplace equation S. B. Sorokin Sib. Zh. Vychisl. Mat., 22:1 (2019), 99–117
|
|
12. |
Kamila Koledina, Sergey Koledin, Irek Gubaydullin, Communications in Computer and Information Science, 1514, Advances in Optimization and Applications, 2021, 217  |
→ |
Automated identification system of conditions for homogeneous and heterogeneous reactions in multipurpose optimization problems K. F. Koledina, S. N. Koledin, I. M. Gubaydullin Sib. Zh. Vychisl. Mat., 22:2 (2019), 137–151
|
|
13. |
K V Trubitsyn, G V Mikheeva, R M Klebleev, O Y Kurganova, “Further boundary conditions in heat conduction problems in multilayer structures”, J. Phys.: Conf. Ser., 1745:1 (2021), 012073  |
→ |
A method of obtaining analytical solutions to boundary value problems based on defining additional boundary conditions and additional desired functions I. V. Kudinov, E. V. Kotova, V. A. Kudinov Sib. Zh. Vychisl. Mat., 22:2 (2019), 153–165
|
14. |
Anton Vladimirovich Eremin, Sofya Alekseevna Zinina, Dmitry Mikhailovich Bragin, Svyatoslav Sergeevich Leonov, Kristina Vladimirovna Gubareva, 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 2021, 1033  |
→ |
A method of obtaining analytical solutions to boundary value problems based on defining additional boundary conditions and additional desired functions I. V. Kudinov, E. V. Kotova, V. A. Kudinov Sib. Zh. Vychisl. Mat., 22:2 (2019), 153–165
|
15. |
K V Trubitsyn, G V Mikheeva, R M Klebleev, E V Stefanyuk, “Determination of heat exchange coefficient in heat conductivity problems with asymmetric boundary conditions”, J. Phys.: Conf. Ser., 1745:1 (2021), 012074  |
→ |
A method of obtaining analytical solutions to boundary value problems based on defining additional boundary conditions and additional desired functions I. V. Kudinov, E. V. Kotova, V. A. Kudinov Sib. Zh. Vychisl. Mat., 22:2 (2019), 153–165
|
|
16. |
G. A. Mikhailov, I. N. Medvedev, “New correlative randomized algorithms for statistical modelling of radiation transfer in stochastic medium”, Russ. J. Numer. Anal. Math. Model, 36:4 (2021), 219–225  |
→ |
Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method) G. A. Mikhailov Sib. Zh. Vychisl. Mat., 22:2 (2019), 187–200
|
17. |
G. A. Mikhailov, I. N. Medvedev, “Novyi korrelyatsionno randomizirovannyi algoritm otsenki vliyaniya stokhastichnosti sredy na perenos chastits”, Dokl. RAN. Matem., inform., prots. upr., 498 (2021), 55–58  |
→ |
Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method) G. A. Mikhailov Sib. Zh. Vychisl. Mat., 22:2 (2019), 187–200
|
18. |
E. G. Kablukova, S. M. Prigarin, “Influence of unbroken clouds stochastic structure on the solar radiation transfer with results of Monte Carlo simulation”, Russ. J. Numer. Anal. Math. Model, 36:2 (2021), 75–86  |
→ |
Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method) G. A. Mikhailov Sib. Zh. Vychisl. Mat., 22:2 (2019), 187–200
|
19. |
T. E. Bulgakova, A. V. Voitishek, “Uslovnaya optimizatsiya funktsionalnogo vychislitelnogo yadernogo algoritma priblizheniya veroyatnostnoi plotnosti po zadannoi vyborke”, Zh. vychisl. matem. i matem. fiz., 61:9 (2021), 1431–1446  |
→ |
Randomized algorithms of Monte Carlo method for problems with random parameters (“double randomization” method) G. A. Mikhailov Sib. Zh. Vychisl. Mat., 22:2 (2019), 187–200
|
|
20. |
T. Lazovskaya, G. Malykhina, D. Tarkhov, “Physics-based neural network methods for solving parameterized singular perturbation problem”, Computation, 9:9 (2021), 97  |
→ |
Parameter-uniform numerical methods for a class of parameterized singular perturbation problems D. Shakti, J. Mohapatra Sib. Zh. Vychisl. Mat., 22:2 (2019), 213–228
|
|
|
Total publications: |
887 |
Scientific articles: |
853 |
Authors: |
888 |
Citations: |
2915 |
Cited articles: |
562 |
 |
Impact Factor Web of Science |
|
for 2023:
0.400 |
 |
Scopus Metrics |
|
2024 |
SJR |
0.207 |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.585 |
|
2023 |
SJR |
0.268 |
|
2022 |
SJR |
0.227 |
|
2021 |
SJR |
0.402 |
|
2020 |
SJR |
0.324 |
|
2019 |
SJR |
0.228 |
|
2018 |
CiteScore |
0.610 |
|
2018 |
SJR |
0.382 |
|
2017 |
CiteScore |
0.450 |
|
2017 |
SNIP |
0.440 |
|
2017 |
SJR |
0.164 |
|
2016 |
CiteScore |
0.330 |
|
2016 |
SNIP |
0.534 |
|
2016 |
SJR |
0.138 |
|
2015 |
CiteScore |
0.180 |
|
2015 |
SNIP |
0.347 |
|
2015 |
IPP |
0.136 |
|
2015 |
SJR |
0.146 |
|
2014 |
CiteScore |
0.310 |
|
2014 |
SNIP |
0.673 |
|
2014 |
IPP |
0.308 |
|
2014 |
SJR |
0.220 |
|
2013 |
SNIP |
0.652 |
|
2013 |
IPP |
0.223 |
|
2013 |
SJR |
0.189 |
|
2012 |
SNIP |
0.415 |
|
2012 |
IPP |
0.200 |
|
2012 |
SJR |
0.153 |
|