|
2-years impact-factor Math-Net.Ru of «Teoreticheskaya i Matematicheskaya Fizika» journal, 2024
2-years impact-factor Math-Net.Ru of the journal in 2024 is calculated
as the number of citations in 2024 to the scientific papers published during
2022–2023.
The table below contains the list of citations in 2024 to the papers
published in 2022–2023. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
| Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
| 2024 |
1.115 |
262 |
292 |
129 |
12.3% |
|
|
|
| N |
Citing pulication |
|
Cited paper |
|
| 1. |
B. Hu, Z.i Shen, L. Zhang, F. Fang, “Riemann–Hilbert approach to the focusing and defocusing nonlocal derivative nonlinear Schrödinger equation with step-like initial data”, Applied Mathematics Letters, 148 (2024), 108885  |
→ |
Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation Xinxin Ma, Yonghui Kuang TMF, 210:1 (2022), 38–53
|
| 2. |
S. Cui, Z. Wang, “Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation”, Nonlinearity, 37:10 (2024), 105015  |
→ |
Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation Xinxin Ma, Yonghui Kuang TMF, 210:1 (2022), 38–53
|
| 3. |
Y. Zhang, D. Qiu, S. Shen, J. He, “The revised Riemann–Hilbert approach to the Kaup–Newell equation with a non-vanishing boundary condition: Simple poles and higher-order poles”, Journal of Mathematical Physics, 65:8 (2024)  |
→ |
Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation Xinxin Ma, Yonghui Kuang TMF, 210:1 (2022), 38–53
|
| 4. |
X.-Y. Liu, R. Guo, “Mixed single, double, and triple poles solutions for the space-time shifted nonlocal DNLS equation with nonzero boundary conditions via Riemann–Hilbert approach”, Nuclear Physics B, 1009 (2024), 116742  |
→ |
Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation Xinxin Ma, Yonghui Kuang TMF, 210:1 (2022), 38–53
|
|
| 5. |
A. Mirza, M. Al-Khassan, “Superpolevye preobrazovaniya Beklunda i Darbu $\mathcal N=1$ supersimmetrichnoi svyazannoi bezdispersionnoi integriruemoi sistemy”, TMF, 219:1 (2024), 114–123  |
→ |
Dynamics of kink-soliton solutions of the $(2+1)$-dimensional
sine-Gordon equation U. Saleem, H. Sarfraz, Ya. Hanif TMF, 210:1 (2022), 80–98
|
|
| 6. |
M. M. Rahmatullaev, M. A. Rasulova, “Ground states and Gibbs measures for the Potts-SOS model with an external field on the Cayley tree”, Lobachevskii J. Math., 45:1 (2024), 518  |
→ |
Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree U. A. Rozikov, M. M. Rahmatullaev, R. M. Khakimov TMF, 210:1 (2022), 156–176
|
| 7. |
M. Makhammadaliev, “Weakly periodic Gibbs measures for the HC model with a countable set of spin values”, Reports on Mathematical Physics, 94:1 (2024), 83  |
→ |
Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree U. A. Rozikov, M. M. Rahmatullaev, R. M. Khakimov TMF, 210:1 (2022), 156–176
|
| 8. |
R. M. Khakimov, M. T. Makhammadaliev, “Translation-invariant Gibbs measures for the hard core model with a countable set of spin values”, Lobachevskii J. Math., 45:8 (2024), 3897  |
→ |
Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree U. A. Rozikov, M. M. Rahmatullaev, R. M. Khakimov TMF, 210:1 (2022), 156–176
|
| 9. |
M. T. Makhammadaliev, “Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:4 (2024), 499–517  |
→ |
Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree U. A. Rozikov, M. M. Rahmatullaev, R. M. Khakimov TMF, 210:1 (2022), 156–176
|
| 10. |
M. A. Rasulova, “Ground states for the Potts model with an external field”, Reports on Mathematical Physics, 94:3 (2024), 325  |
→ |
Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree U. A. Rozikov, M. M. Rahmatullaev, R. M. Khakimov TMF, 210:1 (2022), 156–176
|
|
| 11. |
V. K. Dobrev, “Canonical construction of invariant differential operators: A review”, Symmetry, 16:2 (2024), 151  |
→ |
Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters A. P. Isaev, A. A. Provorov TMF, 210:2 (2022), 259–301
|
| 12. |
A. A. Provorov, “Split Casimir operator of algebra $D(2,1;\alpha )$ in representations $a{{d}^{{ \otimes 2}}}$ and $a{{d}^{{ \otimes 3}}}$ and Vogel parameterization”, Phys. Part. Nuclei Lett., 21:4 (2024), 883  |
→ |
Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters A. P. Isaev, A. A. Provorov TMF, 210:2 (2022), 259–301
|
| 13. |
A. P. Isaev, A. A. Provorov, “$3$-rasscheplennyi operator Kazimira prostykh superalgebr Li $sl(M|N)$ i $osp(M|N)$ v predstavlenii $\operatorname{ad}^{\otimes 3}$ i parametrizatsiya Vozhelya”, TMF, 221:1 (2024), 154–175  |
→ |
Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters A. P. Isaev, A. A. Provorov TMF, 210:2 (2022), 259–301
|
|
| 14. |
S.-f. Wang, “Localized excitation and fractal structures of a (2+1)-dimensional Longwater wave equation”, Opt. Quant. Electron., 56:2 (2024)  |
→ |
Riemann–Hilbert approach and $N$-soliton solutions of the generalized mixed nonlinear Schrödinger equation Deqin Qiu, Cong Lv TMF, 210:3 (2022), 331–349
|
|
| 15. |
S. Qiu, R. Wang, Y. Yao, “Cauchy matrix approach for generalized semi-discrete lattice potential Korteweg–de Vries equations”, Phys. Scr., 99:9 (2024), 095250  |
→ |
Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form Shuai Zhang, Song-Lin Zhao, Ying Shi TMF, 210:3 (2022), 350–374
|
|
| 16. |
B. A. Babajanov, F. B. Abdikarimov, F. U. Sulaymonov, “On the integration of the hierarchy of the Kaup–Boussinesq system with a self-consistent source”, Lobachevskii J. Math., 45:7 (2024), 3233  |
→ |
Integration of the differential–difference sine-Gordon equation with a self-consistent source B. A. Babajanov, A. K. Babadjanova, A. Sh. Azamatov TMF, 210:3 (2022), 375–386
|
|
| 17. |
Shifei Sun, Biao Li, “The Dbar-dressing method for the (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation”, Commun. Theor. Phys., 76:1 (2024), 015003  |
→ |
On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair Beibei Hu, Xiaomei Yu, Ling Zhang TMF, 210:3 (2022), 387–404
|
|
| 18. |
I. Ya. Aref'eva, A. Hajilou, A. Nikolaev, P. Slepov, “Holographic QCD running coupling for light quarks in strong magnetic field”, Phys. Rev. D, 110:8 (2024)  |
→ |
Anisotropic solution of the holographic model of light quarks with an external magnetic field I. Ya. Aref'eva, K. A. Rannu, P. S. Slepov TMF, 210:3 (2022), 416–421
|
| 19. |
I. Ya. Arefeva, A. Khadzhilu, P. S. Slepov, M. K. Usova, “Beta-funktsiya v golograficheskikh modelyakh KKhD”, TMF, 221:3 (2024), 615–628  |
→ |
Anisotropic solution of the holographic model of light quarks with an external magnetic field I. Ya. Aref'eva, K. A. Rannu, P. S. Slepov TMF, 210:3 (2022), 416–421
|
| 20. |
I. Ya. Aref'eva, A. Hajilou, P. Slepov, M. Usova, “Running coupling for holographic QCD with heavy and light quarks: Isotropic case”, Phys. Rev. D, 110:12 (2024)  |
→ |
Anisotropic solution of the holographic model of light quarks with an external magnetic field I. Ya. Aref'eva, K. A. Rannu, P. S. Slepov TMF, 210:3 (2022), 416–421
|
|
|
|
| Total publications: |
8534 |
| Scientific articles: |
8395 |
| Authors: |
5184 |
| Citations: |
72338 |
| Cited articles: |
6810 |
 |
Impact Factor Web of Science |
|
for 2024:
1.100 |
|
for 2023:
1.000 |
|
for 2022:
1.000 |
|
for 2021:
0.685 |
|
for 2020:
0.956 |
|
for 2019:
0.854 |
|
for 2018:
0.901 |
|
for 2017:
0.851 |
|
for 2016:
0.984 |
|
for 2015:
0.831 |
|
for 2014:
0.801 |
|
for 2013:
0.700 |
|
for 2012:
0.669 |
|
for 2011:
0.650 |
|
for 2010:
0.748 |
|
for 2009:
0.796 |
|
for 2008:
0.721 |
|
for 2007:
0.622 |
|
for 2006:
0.626 |
|
for 2005:
0.569 |
|
for 2004:
0.651 |
|
for 2003:
0.729 |
 |
Scopus Metrics |
|
2024 |
CiteScore |
1.800 |
|
2024 |
SNIP |
0.866 |
|
2024 |
SJR |
0.353 |
|
2023 |
CiteScore |
1.600 |
|
2023 |
SNIP |
0.802 |
|
2023 |
SJR |
0.325 |
|
2022 |
SJR |
0.315 |
|
2021 |
SJR |
0.324 |
|
2020 |
SJR |
0.416 |
|
2019 |
SJR |
0.299 |
|
2018 |
CiteScore |
0.810 |
|
2018 |
SJR |
0.386 |
|
2017 |
CiteScore |
0.800 |
|
2017 |
SNIP |
0.865 |
|
2017 |
SJR |
0.409 |
|
2016 |
CiteScore |
0.740 |
|
2016 |
SNIP |
0.970 |
|
2016 |
SJR |
0.425 |
|
2015 |
CiteScore |
0.650 |
|
2015 |
SNIP |
0.805 |
|
2015 |
IPP |
0.658 |
|
2015 |
SJR |
0.481 |
|
2014 |
CiteScore |
0.650 |
|
2014 |
SNIP |
0.899 |
|
2014 |
IPP |
0.678 |
|
2014 |
SJR |
0.492 |
|
2013 |
SNIP |
0.800 |
|
2013 |
IPP |
0.573 |
|
2013 |
SJR |
0.494 |
|
2012 |
SNIP |
0.764 |
|
2012 |
IPP |
0.555 |
|
2012 |
SJR |
0.294 |
|