|
2-years impact-factor Math-Net.Ru of «Teplofizika vysokikh temperatur» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
1.119 |
260 |
291 |
146 |
27.5% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. L. Khomkin, A. S. Shumikhin, “Trekhkomponentnaya khimicheskaya model neidealnoi plazmy «dlya polzovatelei»”, TVT, 59:1 (2021), 3–11 |
→ |
Characteristics of interatomic and the ion-atom interaction in gases during the dissociation process A. L. Khomkin, A. S. Shumikhin TVT, 57:1 (2019), 4–10
|
|
2. |
Natalia A. Astafeva, Andrey A. Balanovskiy, Anna A. Pershina, “A Study of the Influence of Local Heat Treatment on the Structure of Welded Titanium Pipelines”, DDF, 410 (2021), 37 |
→ |
Invisible structure of the cathode spot of a welding arc with a tungsten anode and a film cathode burning in an inert gas A. E. Balanovskiy TVT, 57:1 (2019), 11–19
|
|
3. |
S. U. Khudoiberdizoda, I. N. Ganiev, S. E. Otadzhonov, B. B. Eshov, U. Sh. Yakubov, “Vliyanie medi na teploemkost i izmeneniya termodinamicheskikh funktsii svintsa”, TVT, 59:1 (2021), 55–61 |
→ |
Temperature dependence of the heat capacity and change of the thermodynamic functions of AK1 alloy doped with strontium I. N. Ganiev, S. E. Otajonov, N. F. Ibrokhimov, M. Makhmudov TVT, 57:1 (2019), 26–31
|
4. |
S. Sukpancharoen, B. Prasartkaew, “Combined heat and power plant using a multi-objective henry gas solubility optimization algorithm: a thermodynamic investigation of energy, exergy, and economic (3E) analysis”, Heliyon, 7:9 (2021), e08003 |
→ |
Temperature dependence of the heat capacity and change of the thermodynamic functions of AK1 alloy doped with strontium I. N. Ganiev, S. E. Otajonov, N. F. Ibrokhimov, M. Makhmudov TVT, 57:1 (2019), 26–31
|
5. |
B. N. Gulov, Z. Nizomov, F. S. Tabarov, “Thermophysical Properties of Aluminium of Grade A5N and Its Alloys Doped with Silicon, Copper and Rare-Earth Metals”, Metallofiz. Noveishie Tekhnol., 43:11 (2021), 1553 |
→ |
Temperature dependence of the heat capacity and change of the thermodynamic functions of AK1 alloy doped with strontium I. N. Ganiev, S. E. Otajonov, N. F. Ibrokhimov, M. Makhmudov TVT, 57:1 (2019), 26–31
|
|
6. |
M. Storozhenko, O. Umanskyi, V. Krasovskyy, O. Terentiev, V. Muratov, D. Vedel, “Wettability and interface phenomena in the zrb2-nicrbsic system”, J. Mater. Eng. Perform., 30:11 (2021), 7935–7942 |
→ |
Thermal expansion of microand nanocrystalline $\rm HfB_2$ D. Yu. Kovalev, S. P. Shilkin, S. V. Konovalikhin, G. V. Kalinnikov, I. I. Korobov, S. E. Kravchenko, N. Yu. Khomenko, R. A. Andrievski TVT, 57:1 (2019), 37–41
|
|
7. |
M A Maltsev, I V Morozov, E L Osina, “Computation of molecular spectra and thermodynamic functions for diatomic ideal gases using interatomic potentials”, J. Phys.: Conf. Ser., 1787:1 (2021), 012009 |
→ |
Thermodynamic properties of $\rm Ar^+_2$ and $\rm Ar_2$ argon dimers M. A. Maltsev, I. V. Morozov, E. L. Osina TVT, 57:1 (2019), 42–46
|
|
8. |
R. Novakovic, S. Delsante, D. Giuranno, “Design of composites by infiltration process: a case study of liquid ir-si alloy/sic systems”, Materials, 14:20 (2021), 6024 |
→ |
Dependences of $\rm Co$–$\rm Si$ melt viscosity on temperature and concentration A. L. Bel'tyukov, N. V. Olyanina, V. I. Lad'yanov TVT, 57:1 (2019), 47–54
|
9. |
Yu. N. Starodubtsev, V. S. Tsepelev, “Analiz kinematicheskoi vyazkosti i samodiffuzii zhidkikh metallov pri temperature plavleniya”, TVT, 59:3 (2021), 345–351 |
→ |
Dependences of $\rm Co$–$\rm Si$ melt viscosity on temperature and concentration A. L. Bel'tyukov, N. V. Olyanina, V. I. Lad'yanov TVT, 57:1 (2019), 47–54
|
|
10. |
S. V. Onufriev, “Termodinamicheskie svoistva ruteniya i osmiya”, TVT, 59:5 (2021), 668–678 |
→ |
New estimate of osmium melting heat L. R. Fokin, E. Yu. Kulyamina, V. Yu. Zitserman TVT, 57:1 (2019), 61–65
|
11. |
J. W. Arbiaster, “A re-assessment of the thermodynamic properties of osmium improved value for the enthalpy of fusion”, Johns. Matthey Technol. Rev., 65:1 (2021), 54–63 |
→ |
New estimate of osmium melting heat L. R. Fokin, E. Yu. Kulyamina, V. Yu. Zitserman TVT, 57:1 (2019), 61–65
|
|
12. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Teplomassoperenos na bokovykh poverkhnostyakh zatuplennykh nosovykh chastei giperzvukovykh letatelnykh apparatov”, TVT, 59:5 (2021), 797–800 |
→ |
Effect of components of the heat conductivity tensor of heat-protection material on the value of heat fluxes from the gasdynamic boundary layer V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova TVT, 57:1 (2019), 66–71
|
13. |
E. M. Kartashov, “Analiticheskie resheniya modelei lokalno-neravnovesnogo teploperenosa”, TVT, 59:2 (2021), 212–220 |
→ |
Effect of components of the heat conductivity tensor of heat-protection material on the value of heat fluxes from the gasdynamic boundary layer V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova TVT, 57:1 (2019), 66–71
|
|
14. |
A. R. Zabirov, I. A. Molotova, I. A. Belyaev, V. A. Ryazantsev, V. V. Yagov, “Concerning the methods of thermocouple embedding in experimental studies of cooling the high-temperature bodies in subcooled and saturated liquids”, Thermophys. Aeromechanics, 28:3 (2021), 447–454 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
15. |
V. V. Yagov, K. B. Minko, A. R. Zabirov, “Two distinctly different modes of cooling high-temperature bodies in subcooled liquids”, Int. J. Heat Mass Transf., 167 (2021), 120838 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
16. |
S. D. Fedorovich, A. V. Dedov, I. A. Khaziev, “Creating heat exchange surfaces using laser, electronic, and plasma energy fluxes”, High Temp. Mater. Process, 25:1 (2021), 81–93 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
17. |
Michael M. Vinogradov, Arslan R. Zabirov, Irina A. Molotova, Ivan M. Molotov, 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2021, 1 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
18. |
A R Zabirov, V V Yagov, VA Ryazantsev, I A Molotova, M M Vinogradov, “Decrease of Leidenfrost temperature at quenching in subcooled liquids”, J. Phys.: Conf. Ser., 2116:1 (2021), 012010 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
19. |
A. I. Leontev, Yu. A. Kuzma-Kichta, S. V. Veretennikov, O. A. Evdokimov, “Teplomassoobmen i gidrodinamika v zakruchennykh potokakh”, TVT, 59:5 (2021), 774–789 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
20. |
I Molotova, A Zabirov, M Vinogradov, V Yagov, A Sorokin, “EFFECT OF COATING PROPERTIES ON HEAT TRANSFER DURING COOLING OF HIGH-TEMPERATURE CYLINDRICAL BODIES”, PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS, 2021:4 (2021), 195 |
→ |
Effect of coating by a carbon nanostructure on heat transfer with unsteady film boiling A. V. Dedov, A. R. Zabirov, A. Sliva, S. D. Fedorovich, V. V. Yagov TVT, 57:1 (2019), 72–82
|
|
|
Total publications: |
11394 |
Scientific articles: |
10798 |
Authors: |
8768 |
Citations: |
21154 |
Cited articles: |
3658 |
|
Impact Factor Web of Science |
|
for 2023:
1.000 |
|
for 2021:
0.518 |
|
for 2020:
1.094 |
|
for 2019:
1.085 |
|
for 2018:
1.164 |
|
for 2017:
1.064 |
|
for 2016:
1.110 |
|
for 2015:
1.048 |
|
for 2014:
0.952 |
|
for 2013:
1.156 |
|
for 2012:
0.492 |
|
for 2011:
0.432 |
|
for 2010:
0.635 |
|
for 2009:
0.578 |
|
for 2008:
0.469 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.500 |
|
2023 |
SNIP |
0.421 |
|
2023 |
SJR |
0.295 |
|
2022 |
SJR |
0.307 |
|
2021 |
SJR |
0.352 |
|
2020 |
SJR |
0.433 |
|
2019 |
SJR |
0.538 |
|
2018 |
CiteScore |
1.360 |
|
2018 |
SJR |
0.461 |
|
2017 |
CiteScore |
1.090 |
|
2017 |
SNIP |
1.434 |
|
2017 |
SJR |
0.455 |
|
2016 |
CiteScore |
1.140 |
|
2016 |
SNIP |
1.409 |
|
2016 |
SJR |
0.484 |
|
2015 |
CiteScore |
0.930 |
|
2015 |
SNIP |
1.317 |
|
2015 |
IPP |
0.904 |
|
2015 |
SJR |
0.401 |
|
2014 |
CiteScore |
0.920 |
|
2014 |
SNIP |
1.246 |
|
2014 |
IPP |
0.872 |
|
2014 |
SJR |
0.277 |
|
2013 |
SNIP |
0.945 |
|
2013 |
IPP |
0.961 |
|
2013 |
SJR |
0.253 |
|
2012 |
SNIP |
0.771 |
|
2012 |
IPP |
0.436 |
|
2012 |
SJR |
0.269 |
|