|
2-years impact-factor Math-Net.Ru of «Vladikavkazskii Matematicheskii Zhurnal» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
0.349 |
63 |
22 |
14 |
9.1% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. V. Kostin, “Asimptoticheskie na psevdosferakh i ugol parallelnosti”, Izv. vuzov. Matem., 2021, № 6, 25–34 |
→ |
Asymptotic lines on the pseudo-spherical surfaces A. V. Kostin Vladikavkaz. Mat. Zh., 21:1 (2019), 16–26
|
2. |
A. V. Kostin, “Some generalizations of the shadow problem in the Lobachevsky space”, Ukr. Math. J. , 73:1 (2021), 67–75 |
→ |
Asymptotic lines on the pseudo-spherical surfaces A. V. Kostin Vladikavkaz. Mat. Zh., 21:1 (2019), 16–26
|
|
3. |
T. K. Yuldashev, “Obratnaya smeshannaya zadacha dlya integro-differentsialnogo uravneniya s mnogomernym operatorom Benni—Lyuka i nelineinymi maksimumami”, Differentsialnye uravneniya, geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 201, VINITI RAN, M., 2021, 3–15 |
→ |
A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 21:2 (2019), 67–84
|
4. |
T. K. Yuldashev, B. I. Islomov, “Obratnaya kraevaya zadacha dlya integro-differentsialnogo uravneniya psevdoparabolo-psevdogiperbolicheskogo tipa”, Differentsialnye uravneniya, geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 201, VINITI RAN, M., 2021, 16–32 |
→ |
A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 21:2 (2019), 67–84
|
5. |
B. I. Islomov, A. A. Abdullaev, “Ob odnoi nelokalnoi kraevoi zadache dlya uravneniya smeshannogo tipa vtorogo roda”, Differentsialnye uravneniya, geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 201, VINITI RAN, M., 2021, 65–79 |
→ |
A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 21:2 (2019), 67–84
|
6. |
T. K. Yuldashev, B. J. Kadirkulov, “Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions”, Lobachevskii J. Math., 42:3, SI (2021), 649–662 |
→ |
A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 21:2 (2019), 67–84
|
7. |
T. K. Yuldashev, B. J. Kadirkulov, “On a boundary value problem for a mixed type fractional differential equations with parameters”, Proc. Inst. Math. Mech., 47:1 (2021), 112–123 |
→ |
A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 21:2 (2019), 67–84
|
|
8. |
Zabeti O., “Am-Spaces From a Locally Solid Vector Lattice Point of View With Applications”, Bull. Iran Math. Soc., 47:5 (2021), 1559–1569 |
→ |
Lattice structure on bounded homomorphisms
between topological lattice rings O. Zabeti Vladikavkaz. Mat. Zh., 21:3 (2019), 14–23
|
9. |
O. Zabeti, “Topological lattice rings with the $AM$-property”, Vladikavk. matem. zhurn., 23:1 (2021), 20–31 |
→ |
Lattice structure on bounded homomorphisms
between topological lattice rings O. Zabeti Vladikavkaz. Mat. Zh., 21:3 (2019), 14–23
|
|
10. |
V. A. Koibaev, “Zamknutye elementarnye seti nad polem nulevoi kharakteristiki”, Sib. matem. zhurn., 62:2 (2021), 326–332 |
→ |
Decomposition of elementary transvection in elementary net group S. Yu. Itarova, V. A. Koibaev Vladikavkaz. Mat. Zh., 21:3 (2019), 24–30
|
|
11. |
B. R. Aminov, V. I. Chilin, “Slabaya nepreryvnost kosoermitovykh operatorov v banakhovykh idealakh”, Geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 197, VINITI RAN, M., 2021, 3–11 |
→ |
Isometries of real subspaces of self-adjoint operators in banach symmetric ideals B. R. Aminov, V. I. Chilin Vladikavkaz. Mat. Zh., 21:4 (2019), 11–24
|
|
12. |
A. Aydin, E. Emelyanov, S. Gorokhova, “Full lattice convergence on Riesz spaces”, Indag. Math.-New Ser., 32:3 (2021), 658–690 |
→ |
Unbounded order convergence and the Gordon theorem E. Y. Emelyanov, S. G. Gorokhova, S. S. Kutateladze Vladikavkaz. Mat. Zh., 21:4 (2019), 56–62
|
|
13. |
M. C. Shanmukha, A. Usha, M. K. Siddiqui, K. C. Shilpa, A. Asare-Tuah, “Novel degree-based topological descriptors of carbon nanotubes”, J. Chem., 2021 (2021), 3734185 |
→ |
Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube P. Sh. Hemavathi, V. Lokesha, M. Manjunath, P. S. K. Reddy, R. Shruti Vladikavkaz. Mat. Zh., 22:1 (2020), 66–77
|
14. |
Ishtiaq M., Rauf A., Rubbab Q., Siddiqui M.K., Ata-ur-Rehman, Cancan M., “A Degree Based Topological Study of Two Carbon Nanosheets Vc5C7 and Hc5C7”, Polycycl. Aromat. Compd., 2021 |
→ |
Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube P. Sh. Hemavathi, V. Lokesha, M. Manjunath, P. S. K. Reddy, R. Shruti Vladikavkaz. Mat. Zh., 22:1 (2020), 66–77
|
|
15. |
V. V. Shustov, “O priblizhenii opredelennykh integralov sostavnymi kvadraturnymi formulami s ispolzovaniem proizvodnykh”, Vestnik KRAUNTs. Fiz.-mat. nauki, 34:1 (2021), 88–104 |
→ |
On representation of certain integrals using the values of a function and its derivatives V. V. Shustov Vladikavkaz. Mat. Zh., 22:2 (2020), 82–97
|
|
16. |
K. P. Isaev, R. S. Yulmukhametov, “Equivalent conditions for the existence of unconditional bases of reproducing kernels in spaces of entire functions”, Probl. anal. Issues Anal., 10(28):3 (2021), 41–52 |
→ |
Unconditional bases in radial Hilbert spaces K. P. Isaev, R. S. Yulmukhametov Vladikavkaz. Mat. Zh., 22:3 (2020), 85–99
|
|
17. |
A. V. Lutsenko, I. Kh. Musin, “O prostranstve golomorfnykh funktsii s granichnoi gladkostyu i ego sopryazhennom”, Ufimsk. matem. zhurn., 13:3 (2021), 82–96 |
→ |
În a space of holomorphic functions on a bounded convex domain of ${\mathbb C}^n$ and smooth up to the boundary and its dual space I. Kh. Musin Vladikavkaz. Mat. Zh., 22:3 (2020), 100–111
|
18. |
I. Kh. Musin, A. I. Rakhimova, “Paley–Wiener–Schwartz Type Theorem for Ultradistributions on an Unbounded Closed Convex Set”, J Math Sci, 259:2 (2021), 210 |
→ |
În a space of holomorphic functions on a bounded convex domain of ${\mathbb C}^n$ and smooth up to the boundary and its dual space I. Kh. Musin Vladikavkaz. Mat. Zh., 22:3 (2020), 100–111
|
|
19. |
S. A. Dukhnovskii, “Approksimatsionnoe reshenie sistemy McKean”, Materialy Voronezhskoi vesennei
matematicheskoi shkoly
«Sovremennye metody teorii kraevykh
zadach. Pontryaginskie chteniya–XXX».
Voronezh, 3–9 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 191, VINITI RAN, M., 2021, 157–161 |
→ |
Solutions of the Carleman system via the Painlevé expansion S. A. Dukhnovskii Vladikavkaz. Mat. Zh., 22:4 (2020), 58–67
|
|
20. |
Z. A. Kusraeva, “Regulyarnost nepreryvnykh polilineinykh operatorov i odnorodnykh polinomov”, Matem. zametki, 110:5 (2021), 726–735 |
→ |
Some properties of orthogonally additive homogeneous polynomials on Banach lattices Z. A. Kusraeva, S. N. Siukaev Vladikavkaz. Mat. Zh., 22:4 (2020), 92–103
|
|
|
Total publications: |
925 |
Scientific articles: |
818 |
Authors: |
746 |
Citations: |
1200 |
Cited articles: |
395 |
|
Scopus Metrics |
|
2023 |
CiteScore |
0.500 |
|
2023 |
SNIP |
0.414 |
|
2023 |
SJR |
0.210 |
|
2022 |
SJR |
0.276 |
|
2021 |
SJR |
0.300 |
|
2020 |
SJR |
0.126 |
|