|
5-years impact-factor Math-Net.Ru of «Symmetry, Integrability and Geometry: Methods and Applications» journal, 2018
5-years impact-factor Math-Net.Ru of the journal in 2018 is calculated
as the number of citations in 2018 to the scientific papers published during
2013–2017.
The table below contains the list of citations in 2018 to the papers
published in 2013–2017. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
5-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2018 |
1.029 |
516 |
531 |
257 |
5.5% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
S. C. Anco, X. Chang, J. Szmigielski, “The dynamics of conservative peakons in a family of $U(1)$-invariant integrable equations of NLS-Hirota type”, Stud. Appl. Math., 141:4, SI (2018), 680–713 |
→ |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries Changzheng Qu, Junfeng Song, Ruoxia Yao SIGMA, 9 (2013), 001, 19 pp.
|
|
2. |
Ch. Athorne, “Laplace maps and constraints for a class of third-order partial differential operators”, J. Phys. A-Math. Theor., 51:8 (2018), 085205 |
→ |
Invertible Darboux Transformations Ekaterina Shemyakova SIGMA, 9 (2013), 002, 10 pp.
|
|
3. |
A. V. Turbiner, W. Miller Jr., M. A. Escobar-Ruiz, “Three-body problem in $d$-dimensional space: ground state, (quasi)-exact-solvability”, J. Math. Phys., 59:2 (2018), 022108 |
→ |
From Quantum $A_N$ (Sutherland) to $E_8$ Trigonometric Model: Space-of-Orbits View Alexander V. Turbiner SIGMA, 9 (2013), 003, 25 pp.
|
|
4. |
B. G. da Costa, E. P. Borges, “A position-dependent mass harmonic oscillator and deformed space”, J. Math. Phys., 59:4 (2018), 042101 |
→ |
Dynamical Equations, Invariants and Spectrum Generating Algebras of Mechanical
Systems with Position-Dependent Mass Sara Cruz y Cruz, Oscar Rosas-Ortiz SIGMA, 9 (2013), 004, 21 pp.
|
|
5. |
V. Ovsienko, S. Tabachnikov, “Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences”, Algebr. Represent. Theory, 21:5 (2018), 1119–1132 |
→ |
Upper Bounds for Mutations of Potentials John Alexander Cruz Morales, Sergey Galkin SIGMA, 9 (2013), 005, 13 pp.
|
|
6. |
M. J. Lean, “Dorfman connections and Courant algebroids”, J. Math. Pures Appl., 116 (2018), 1–39 |
→ |
Courant Algebroids. A Short History Yvette Kosmann-Schwarzbach SIGMA, 9 (2013), 014, 8 pp.
|
7. |
M. J. Lean, C. Kirchhoff-Lukat, “Natural lifts of Dorfman brackets”, Adv. Theor. Math. Phys., 22:6 (2018), 1401–1446 |
→ |
Courant Algebroids. A Short History Yvette Kosmann-Schwarzbach SIGMA, 9 (2013), 014, 8 pp.
|
8. |
Yunhe Sheng, “The First Pontryagin Class of a Quadratic Lie 2-Algebroid”, Commun. Math. Phys., 362:2 (2018), 689 |
→ |
Courant Algebroids. A Short History Yvette Kosmann-Schwarzbach SIGMA, 9 (2013), 014, 8 pp.
|
|
9. |
P. Baseilhac, V. X. Genest, L. Vinet, A. Zhedanov, “An embedding of the Bannai-Ito algebra in $\mathscr{U}(\mathfrak{osp}(1,2))$ and $-1$ polynomials”, Lett. Math. Phys., 108:7 (2018), 1623–1634 |
→ |
Bispectrality of the Complementary Bannai–Ito Polynomials Vincent X. Genest, Luc Vinet, Alexei Zhedanov SIGMA, 9 (2013), 018, 20 pp.
|
10. |
S. Tsujimoto, L. Vinet, G.-F. Yu, A. Zhedanov, “Symmetric abstract hypergeometric polynomials”, J. Math. Anal. Appl., 458:1 (2018), 742–754 |
→ |
Bispectrality of the Complementary Bannai–Ito Polynomials Vincent X. Genest, Luc Vinet, Alexei Zhedanov SIGMA, 9 (2013), 018, 20 pp.
|
11. |
S. Sargolzaeipor, H. Hassanabadi, W. S. Chung, “Effect of the Wigner-dunkl algebra on the Dirac equation and Dirac harmonic oscillator”, Mod. Phys. Lett. A, 33:25 (2018), 1850146 |
→ |
Bispectrality of the Complementary Bannai–Ito Polynomials Vincent X. Genest, Luc Vinet, Alexei Zhedanov SIGMA, 9 (2013), 018, 20 pp.
|
12. |
J.-M. Lemay, L. Vinet, “Bivariate Bannai-Ito polynomials”, J. Math. Phys., 59:12 (2018), 121703 |
→ |
Bispectrality of the Complementary Bannai–Ito Polynomials Vincent X. Genest, Luc Vinet, Alexei Zhedanov SIGMA, 9 (2013), 018, 20 pp.
|
|
13. |
H. Dette, D. Tomecki, M. Venker, “Universality in random moment problems”, Electron. J. Probab., 23 (2018), 15 |
→ |
On a Seminal Paper by Karlin and McGregor Mirta M. Castro, F. Alberto Grünbaum SIGMA, 9 (2013), 020, 11 pp.
|
14. |
F. A. Grunbaum, M. D. Iglesia, “Stochastic LU factorizations, Darboux transformations and urn models”, J. Appl. Probab., 55:3 (2018), 862–886 |
→ |
On a Seminal Paper by Karlin and McGregor Mirta M. Castro, F. Alberto Grünbaum SIGMA, 9 (2013), 020, 11 pp.
|
|
15. |
G. M. Beffa, E. L. Mansfield, “Discrete moving frames on lattice varieties and lattice-based multispaces”, Found. Comput. Math., 18:1 (2018), 181–247 |
→ |
Integrable Flows for Starlike Curves in Centroaffine Space Annalisa Calini, Thomas Ivey, Gloria Marí-Beffa SIGMA, 9 (2013), 022, 21 pp.
|
|
16. |
Hong J., Kim K.H., Kim K.H., “Effects of Rapid Thermal Annealing on the Electrical and Structural Properties of Mo/Sic Schottky Contacts”, Mol. Cryst. Liquid Cryst., 677:1, SI (2018), 1–9 |
→ |
Object-Image Correspondence for Algebraic Curves under Projections Joseph M. Burdis, Irina A. Kogan, Hoon Hong SIGMA, 9 (2013), 023, 31 pp.
|
|
17. |
Homero G. Díaz-Marín, Robert Oeckl, “Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary”, SIGMA, 14 (2018), 105, 31 pp. |
→ |
Free Fermi and Bose Fields in TQFT and GBF Robert Oeckl SIGMA, 9 (2013), 028, 46 pp.
|
18. |
R. Oeckl, “Coherent states in fermionic Fock-Krein spaces and their amplitudes”, Coherent States and Their Applications: a Contemporary Panorama, Springer Proceedings in Physics, 205, eds. J. Antoine, F. Bagarello, J. Gazeau, Springer-Verlag Berlin, 2018, 243–263 |
→ |
Free Fermi and Bose Fields in TQFT and GBF Robert Oeckl SIGMA, 9 (2013), 028, 46 pp.
|
|
19. |
F. Valiquette, “Symmetry reduction of ordinary differential equations using moving frames”, J. Nonlinear Math. Phys., 25:2 (2018), 211–246 |
→ |
Solving Local Equivalence Problems with the Equivariant Moving Frame Method Francis Valiquette SIGMA, 9 (2013), 029, 43 pp.
|
20. |
P. Bibikov, A. Malakhov, “On classification problems in the theory of differential equations: algebra plus geometry”, Publ. Inst. Math.-Beograd, 103:117 (2018), 33–52 |
→ |
Solving Local Equivalence Problems with the Equivariant Moving Frame Method Francis Valiquette SIGMA, 9 (2013), 029, 43 pp.
|
|
|
Total publications: |
2100 |
Scientific articles: |
2095 |
Authors: |
2789 |
Citations: |
14094 |
Cited articles: |
1655 |
|
Impact Factor Web of Science |
|
for 2023:
0.900 |
|
for 2021:
0.817 |
|
for 2020:
1.072 |
|
for 2019:
0.733 |
|
for 2018:
1.088 |
|
for 2017:
1.100 |
|
for 2016:
0.765 |
|
for 2015:
1.040 |
|
for 2014:
1.245 |
|
for 2013:
1.299 |
|
for 2012:
1.243 |
|
for 2011:
1.071 |
|
for 2010:
0.856 |
|
for 2009:
0.789 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.800 |
|
2023 |
SNIP |
0.888 |
|
2023 |
SJR |
0.493 |
|
2022 |
SJR |
0.576 |
|
2021 |
SJR |
0.429 |
|
2020 |
SJR |
0.556 |
|
2019 |
SJR |
0.532 |
|
2018 |
CiteScore |
1.020 |
|
2018 |
SJR |
0.513 |
|
2017 |
CiteScore |
1.050 |
|
2017 |
SNIP |
0.946 |
|
2017 |
SJR |
0.712 |
|
2016 |
CiteScore |
0.620 |
|
2016 |
SNIP |
0.783 |
|
2016 |
SJR |
0.560 |
|
2015 |
CiteScore |
0.830 |
|
2015 |
SNIP |
1.099 |
|
2015 |
IPP |
0.764 |
|
2015 |
SJR |
0.763 |
|
2014 |
CiteScore |
0.810 |
|
2014 |
SNIP |
0.730 |
|
2014 |
IPP |
0.793 |
|
2014 |
SJR |
0.569 |
|
2013 |
SNIP |
0.630 |
|
2013 |
IPP |
0.770 |
|
2013 |
SJR |
0.608 |
|
2012 |
SNIP |
0.632 |
|
2012 |
IPP |
0.640 |
|
2012 |
SJR |
0.385 |
|