Branching random walks, orthogonal polynomials, Jacobian matrices
Subject:
Jacobi branching random walks. Approach using orthogonal polynomials.
Main publications:
Lyulintsev A. V., “Markovskie vetvyaschiesya protsessy po $\mathbf{Z}_+$ s pogloscheniem v nule”, Zapiski nauchnykh seminarov POMI, 526 (2023), 109-129
Lyulintsev A. V., “Markovskie vetvyaschiesya sluchainye bluzhdaniya po $\mathbf{Z}_+$. Podkhod s ispolzovaniem ortogonalnykh mnogochlenov. I”, Teoriya veroyatn. i ee primen., 69:1 (2024), 91–111
A. V. Lyulintsev, “On the asymptotic behavior of the average value of functionals of a random field of particles defined by a branching random walk”, Algebra i Analiz, 36:4 (2024), 38–56
A. V. Lyulintsev, “Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials. II”, Teor. Veroyatnost. i Primenen., 69:3 (2024), 439–458; Theory Probab. Appl., 69:3 (2024), 346–360
A. V. Lyulintsev, “Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials”, Teor. Veroyatnost. i Primenen., 69:1 (2024), 91–111; Theory Probab. Appl., 69:1 (2024), 71–87
A. V. Lyulintsev, “Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable”, Zap. Nauchn. Sem. POMI, 535 (2024), 173–188
2023
5.
A. V. Lyulintsev, “Markov branching random walks on $\mathbf{Z}_+$ with absorption at zero”, Zap. Nauchn. Sem. POMI, 526 (2023), 109–129