|
|
Publications in Math-Net.Ru |
Citations |
|
2019 |
1. |
A. N. Sergeev, E. D. Zharinov, “Pieri formulae and specialisation of super Jacobi polynomials”, Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019), 377–388 |
1
|
|
2017 |
2. |
A. N. Sergeev, “Lie superalgebras and Calogero–Moser–Sutherland systems”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 136 (2017), 72–102 ; J. Math. Sci. (N. Y.), 235:6 (2018), 756–787 |
3. |
G. S. Movsisyan, A. N. Sergeev, “CMS operators type $ B (1,1)$ and Lie superalgebra $\mathfrak{osp}(3,2)$”, Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017), 19–30 |
|
2014 |
4. |
A. N. Sergeev, A. P. Veselov, “Jacobi–Trudy formula for generalized Schur polynomials”, Mosc. Math. J., 14:1 (2014), 161–168 |
14
|
|
2008 |
5. |
A. M. Vershik, A. N. Sergeev, “A New Approach to the Representation Theory of the Symmetric Groups, IV. $\mathbb Z_2$-Graded Groups and Algebras; Projective Representations of the Group $S_n$”, Mosc. Math. J., 8:4 (2008), 813–842 |
9
|
|
2002 |
6. |
A. N. Sergeev, “Calogero Operator and Lie Superalgebras”, TMF, 131:3 (2002), 355–376 ; Theoret. and Math. Phys., 131:3 (2002), 747–764 |
23
|
|
2000 |
7. |
Č. Burdík, P. Ya. Grozman, D. A. Leites, A. N. Sergeev, “Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I”, TMF, 124:2 (2000), 227–238 ; Theoret. and Math. Phys., 124:2 (2000), 1048–1058 |
8
|
8. |
D. A. Leites, A. N. Sergeev, “Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices”, TMF, 123:2 (2000), 205–236 ; Theoret. and Math. Phys., 123:2 (2000), 582–608 |
12
|
|
1996 |
9. |
A. N. Sergeev, “Vector and Covector Invariants of Lie Superalgebras”, Funktsional. Anal. i Prilozhen., 30:3 (1996), 90–93 ; Funct. Anal. Appl., 30:3 (1996), 218–219 |
4
|
|
1992 |
10. |
A. N. Sergeev, “Analogue of the classical invariant theory for Lie superalgebras”, Funktsional. Anal. i Prilozhen., 26:3 (1992), 88–90 ; Funct. Anal. Appl., 26:3 (1992), 223–225 |
10
|
|
1984 |
11. |
A. N. Sergeev, “Representations of the Lie superalgebras $\mathfrak{gl}(n,m)$ and $Q(n)$ on the space of tensors”, Funktsional. Anal. i Prilozhen., 18:1 (1984), 80–81 ; Funct. Anal. Appl., 18:1 (1984), 70–72 |
14
|
12. |
A. N. Sergeev, “The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$”, Mat. Sb. (N.S.), 123(165):3 (1984), 422–430 ; Math. USSR-Sb., 51:2 (1985), 419–427 |
128
|
|
|
|
2018 |
13. |
A. Vershik, A. Sergeev, “Corrigendum to the paper "A new approach to the representation theory of the symmetric groups. IV. $ \mathbb Z_2$-graded groups and algebras"”, Mosc. Math. J., 18:1 (2018), 187 |
|
2016 |
14. |
V. E. Adler, Yu. Yu. Berest, V. M. Buchstaber, P. G. Grinevich, B. A. Dubrovin, I. M. Krichever, S. P. Novikov, A. N. Sergeev, M. V. Feigin, J. Felder, E. V. Ferapontov, O. A. Chalykh, P. I. Etingof, “Alexander Petrovich Veselov (on his 60th birthday)”, Uspekhi Mat. Nauk, 71:6(432) (2016), 172–188 ; Russian Math. Surveys, 71:6 (2016), 1159–1176 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|