|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina, “Criterion for the existence of a connected characteristic space of orbits in a gradient-like diffeomorphism of a surface”, Izv. RAN. Ser. Mat., 88:3 (2024), 111–138 ; Izv. Math., 88:3 (2024), 515–541 |
2. |
E. V. Nozdrinova, O. V. Pochinka, E. V. Tsaplina, “Characteristic space of orbits of Morse–Smale diffeomorphisms on surfaces”, Mosc. Math. J., 24:1 (2024), 21–39 |
3. |
O. V. Pochinka, E. A. Talanova, “Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices”, Mat. Zametki, 115:4 (2024), 597–609 ; Math. Notes, 115:4 (2024), 588–598 |
4. |
E. M. Osenkov, O. V. Pochinka, “Morse – Smale 3-Diffeomorphisms with Saddles of the Same Unstable Manifold Dimension”, Rus. J. Nonlin. Dyn., 20:1 (2024), 167–178 |
5. |
Marina K. Barinova, Vyacheslav Z. Grines, Olga V. Pochinka, Evgeny V. Zhuzhoma, “Hyperbolic Attractors Which are Anosov Tori”, Regul. Chaotic Dyn., 29:2 (2024), 369–375 |
6. |
Vyacheslav Z. Grines, Olga V. Pochinka, Ekaterina E. Chilina, “On Homeomorphisms of Three-Dimensional Manifolds with Pseudo-Anosov Attractors and Repellers” |
1
|
7. |
O. V. Pochinka, E. A. Talanova, “Morse-Smale diffeomorphisms with non-wandering points of pairwise different Morse indices on 3-manifolds”, Uspekhi Mat. Nauk, 79:1(475) (2024), 135–184 ; Russian Math. Surveys, 79:1 (2024), 127–171 |
8. |
S. V. Zelik, O. V. Pochinka, A. A. Yagilev, “On the Minkowski dimension of some invariant sets of dynamical systems”, Zhurnal SVMO, 26:1 (2024), 32–43 |
9. |
D. A. Baranov, E. V. Nozdrinova, O. V. Pochinka, “Scenario of stable transition from diffeomorphism of torus isotopic to identity one to skew product of rough transformations of circle”, Ufimsk. Mat. Zh., 16:1 (2024), 11–23 ; Ufa Math. J., 16:1 (2024), 10–22 |
|
2023 |
10. |
A. Morozov, O. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on surfaces”, Mosc. Math. J., 23:4 (2023), 571–590 |
11. |
O. V. Pochinka, D. D. Shubin, “Topology of Ambient 3-Manifolds of Non-Singular Flows with Twisted Saddle Orbit”, Rus. J. Nonlin. Dyn., 19:3 (2023), 371–381 |
12. |
D. A. Baranov, V. Z. Grines, O. V. Pochinka, E. E. Chilina, “On a Classification of Periodic Maps on the 2-Torus”, Rus. J. Nonlin. Dyn., 19:1 (2023), 91–110 |
13. |
Vladislav D. Galkin, Elena V. Nozdrinova, Olga V. Pochinka, “Circular Fleitas Scheme for Gradient-Like Flows on the Surface”, Regul. Chaotic Dyn., 28:6 (2023), 865–877 |
14. |
O. V. Pochinka, E. A. Talanova, D. D. Shubin, “Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points”, Mat. Sb., 214:8 (2023), 94–107 ; Sb. Math., 214:8 (2023), 1140–1152 |
3
|
15. |
D. A. Baranov, E. S. Kosolapov, O. V. Pochinka, “Knot as a complete invariant of the diffeomorphism of surfaces with three periodic orbits”, Sibirsk. Mat. Zh., 64:4 (2023), 687–699 |
16. |
M. K. Barinova, V. Z. Grines, O. V. Pochinka, “Criterion for the Existence of an Energy Function for a Regular Homeomorphism of the 3-Sphere”, Trudy Mat. Inst. Steklova, 321 (2023), 45–61 ; Proc. Steklov Inst. Math., 321 (2023), 37–53 |
17. |
O. V. Pochinka, E. A. Talanova, “Minimizing the number of heteroclinic curves of a 3-diffeomorphism with fixed points with pairwise different Morse
indices”, TMF, 215:2 (2023), 311–317 ; Theoret. and Math. Phys., 215:2 (2023), 729–734 |
1
|
|
2022 |
18. |
V. E. Kruglov, O. V. Pochinka, “Topological conjugacy of gradient-like flows on surfaces and efficient algorithms for its distinguition”, CMFD, 68:3 (2022), 467–487 |
19. |
O. V. Pochinka, D. D. Shubin, “Nonsingular Morse–Smale Flows with Three Periodic Orbits on Orientable $3$-Manifolds”, Mat. Zametki, 112:3 (2022), 426–443 ; Math. Notes, 112:3 (2022), 436–450 |
2
|
20. |
Timur V. Medvedev, Elena V. Nozdrinova, Olga V. Pochinka, “Components of Stable Isotopy Connectedness
of Morse – Smale Diffeomorphisms”, Regul. Chaotic Dyn., 27:1 (2022), 77–97 |
21. |
E. V. Nozdrinova, O. V. Pochinka, “Bifurcations changing the homotopy type of the closure of an invariant saddle manifold of a surface diffeomorphism”, Mat. Sb., 213:3 (2022), 81–110 ; Sb. Math., 213:3 (2022), 357–384 |
22. |
V. D. Galkin, O. V. Pochinka, “Spherical flow diagram with finite hyperbolic chain-recurrent set”, Zhurnal SVMO, 24:2 (2022), 132–140 |
|
2021 |
23. |
V. E. Kruglov, O. V. Pochinka, “Classification of the Morse - Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy”, Izvestiya VUZ. Applied Nonlinear Dynamics, 29:6 (2021), 835–850 |
1
|
24. |
M. K. Barinova, E. Y. Gogulina, O. V. Pochinka, “Omega-classification of Surface Diffeomorphisms
Realizing Smale Diagrams”, Rus. J. Nonlin. Dyn., 17:3 (2021), 321–334 |
25. |
O. V. Pochinka, E. V. Nozdrinova, “Stable Arcs Connecting Polar Cascades on a Torus”, Rus. J. Nonlin. Dyn., 17:1 (2021), 23–37 |
26. |
Olga V. Pochinka, Svetlana Kh. Zinina, “Construction of the Morse –Bott Energy Function for Regular
Topological Flows”, Regul. Chaotic Dyn., 26:4 (2021), 350–369 |
2
|
27. |
D. A. Baranov, O. V. Pochinka, “Classification of periodic transformations of an orientable surface of genus two”, Zhurnal SVMO, 23:2 (2021), 147–158 |
1
|
28. |
V. Z. Grines, A. I. Morozov, O. V. Pochinka, “Realization of Homeomorphisms of Surfaces of Algebraically Finite Order by Morse–Smale Diffeomorphisms with Orientable Heteroclinic Intersection”, Trudy Mat. Inst. Steklova, 315 (2021), 95–107 ; Proc. Steklov Inst. Math., 315 (2021), 85–97 |
3
|
29. |
E. S. Kosolapov, O. V. Pochinka, “On the connection of periodic homeomorphisms of a surface with Seifert manifolds and the Morse-Smale diffeomorphism”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 3, 58–71 |
30. |
V. I. Shmukler, O. V. Pochinka, “On bifurcations that change the type of heteroclinic curves of a Morse-Smale $3$-diffeomorphism”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 1, 101–114 |
1
|
|
2020 |
31. |
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On embedding of the Morse–Smale diffeomorphisms in a topological flow”, CMFD, 66:2 (2020), 160–181 |
1
|
32. |
O. V. Pochinka, S. Kh. Zinina, “A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets”, Mat. Zametki, 107:2 (2020), 276–285 ; Math. Notes, 107:2 (2020), 313–321 |
1
|
33. |
V. Z. Grines, E. V. Kruglov, O. V. Pochinka, “The Topological Classification of Diffeomorphisms of the Two-Dimensional Torus with an Orientable Attractor”, Rus. J. Nonlin. Dyn., 16:4 (2020), 595–606 |
34. |
Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728 |
3
|
35. |
E. V. Nozdrinova, O. V. Pochinka, “On the solution of the 33rd Palis–Pugh problem for gradient-like diffeomorphisms of a 2-sphere”, Uspekhi Mat. Nauk, 75:2(452) (2020), 195–196 ; Russian Math. Surveys, 75:2 (2020), 383–385 |
1
|
36. |
A. I. Morozov, O. V. Pochinka, “Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic”, Zhurnal SVMO, 22:1 (2020), 71–80 |
2
|
37. |
V. Z. Grines, E. V. Kruglov, O. V. Pochinka, “Scenario of a Simple Transition from a Structurally Stable 3-Diffeomorphism with a Two-Dimensional Expanding Attractor to a DA Diffeomorphism”, Trudy Mat. Inst. Steklova, 308 (2020), 152–166 ; Proc. Steklov Inst. Math., 308 (2020), 141–154 |
38. |
O. V. Pochinka, S. Kh. Zinina, “Dynamics of regular topological flows”, Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 3, 77–91 |
|
2019 |
39. |
O. V. Pochinka, S. Yu. Galkina, D. D. Shubin, “Modeling of gradient-like flows on $n$-sphere”, Izvestiya VUZ. Applied Nonlinear Dynamics, 27:6 (2019), 63–72 |
1
|
40. |
V. Grines, E. Gurevich, O. Pochinka, “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Mosc. Math. J., 19:4 (2019), 739–760 |
5
|
41. |
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere $S^n$, $n\ge 4$”, Mat. Zametki, 105:1 (2019), 136–141 ; Math. Notes, 105:1 (2019), 132–136 |
7
|
42. |
T. V. Medvedev, E. V. Nozdrinova, O. V. Pochinka, E. V. Shadrina, “On a Class of Isotopic Connectivity of Gradient-like Maps of the 2-sphere with Saddles of Negative Orientation Type”, Rus. J. Nonlin. Dyn., 15:2 (2019), 199–211 |
1
|
43. |
V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Uspekhi Mat. Nauk, 74:1(445) (2019), 41–116 ; Russian Math. Surveys, 74:1 (2019), 37–110 |
27
|
44. |
A. A. Bosova, O. V. Pochinka, “On periodic mapping data of a two-dimensional torus with one saddle orbit”, Zhurnal SVMO, 21:2 (2019), 164–174 |
|
2018 |
45. |
O. V. Pochinka, A. S. Loginova, E. V. Nozdrinova, “One-Dimensional Reaction-Diffusion Equations and Simple Source-Sink Arcs on a Circle”, Nelin. Dinam., 14:3 (2018), 325–330 |
46. |
V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “A multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces”, Mat. Sb., 209:1 (2018), 100–126 ; Sb. Math., 209:1 (2018), 96–121 |
8
|
47. |
A. E. Kolobyanina, E. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal SVMO, 20:4 (2018), 408–418 |
1
|
48. |
E. Nozdrinova, O. V. Pochinka, “On the dynamics of bifurcation diffeomorphisms of a simple arc”, Zhurnal SVMO, 20:1 (2018), 30–38 |
49. |
A. I. Morozov, O. V. Pochinka, “About new invariants of kupka-smale diffeomorphisms on the sphere without sources and sinks”, Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 3, 82–92 |
|
2017 |
50. |
V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Dynamical systems and topology of magnetic fields in conducting medium”, CMFD, 63:3 (2017), 455–474 |
3
|
51. |
V. Z. Grines, O. V. Pochinka, “Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds”, CMFD, 63:2 (2017), 191–222 |
3
|
52. |
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “An Analog of Smale's Theorem for Homeomorphisms with Regular Dynamics”, Mat. Zametki, 102:4 (2017), 613–618 ; Math. Notes, 102:4 (2017), 569–574 |
4
|
53. |
O. V. Pochinka, E. V. Kruglov, A. Y. Dolgonsova, “Scenario of reconnection in the solar corona with a simple discretization”, Nelin. Dinam., 13:4 (2017), 573–578 |
54. |
Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka, “On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics”, Regul. Chaotic Dyn., 22:2 (2017), 122–135 |
7
|
55. |
Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Realization of Morse–Smale diffeomorphisms on $3$-manifolds”, Trudy Mat. Inst. Steklova, 297 (2017), 46–61 ; Proc. Steklov Inst. Math., 297 (2017), 35–49 |
7
|
56. |
A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energy function for an $\Omega$-stable flow with a saddle connection on a sphere”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 4, 51–58 |
|
2016 |
57. |
V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Morse–Smale systems and topological structure of supporting manifolds”, CMFD, 61 (2016), 5–40 |
3
|
58. |
V. Z. Grines, O. V. Pochinka, S. van Strien, “On $2$-diffeomorphisms with one-dimensional basic sets and a finite number of moduli”, Mosc. Math. J., 16:4 (2016), 727–749 |
10
|
59. |
T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies”, Tr. Mosk. Mat. Obs., 77:1 (2016), 83–102 ; Trans. Moscow Math. Soc., 77 (2016), 69–86 |
1
|
60. |
Vyacheslav Z. Grines, Dmitry S. Malyshev, Olga V. Pochinka, Svetlana Kh. Zinina, “Efficient Algorithms for the Recognition of Topologically Conjugate Gradient-like Diffeomorhisms”, Regul. Chaotic Dyn., 21:2 (2016), 189–203 |
7
|
61. |
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On embedding Morse–Smale diffeomorphisms on the sphere in topological flows”, Uspekhi Mat. Nauk, 71:6(432) (2016), 163–164 ; Russian Math. Surveys, 71:6 (2016), 1146–1148 |
4
|
62. |
V. E. Kruglov, O. V. Pochinka, “Graph topological equivalence criterion for $\Omega$-stable flows on surfaces”, Zhurnal SVMO, 18:3 (2016), 41–48 |
63. |
V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, “The graph criterion for the topological equivalence of $\Omega $ – stable flows without periodic trajectories on surfaces and efficient algorithm for its application”, Zhurnal SVMO, 18:2 (2016), 47–58 |
1
|
64. |
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Heteroclinic Curves of Gradient-like Diffeomorphsms and the Topology of Ambient Manifolds”, Zhurnal SVMO, 18:2 (2016), 11–15 |
65. |
V. Z. Grines, O. V. Pochinka, A. A. Shilovskaya, “Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori”, Zhurnal SVMO, 18:1 (2016), 17–26 |
|
2015 |
66. |
V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, CMFD, 57 (2015), 5–30 ; Journal of Mathematical Sciences, 225:2 (2017), 195–219 |
3
|
67. |
V. Z. Grines, M. K. Noskova, O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor”, Tr. Mosk. Mat. Obs., 76:2 (2015), 271–286 ; Trans. Moscow Math. Soc., 76:2 (2015), 237–249 |
6
|
68. |
V. Z. Grines, Yu. A. Levchenko, O. V. Pochinka, “Topological Classification of Structurally Stable 3-Diffeomorphisms with Two-Dimensional Basis Sets”, Mat. Zametki, 97:2 (2015), 318–320 ; Math. Notes, 97:2 (2015), 304–306 |
2
|
69. |
T. M. Mitryakova, O. V. Pochinka, “The criteria of the topological conjugacy of 3-diffeomorphisms with a finite number orbits of heteroclinic tangency”, Zhurnal SVMO, 17:4 (2015), 37–40 |
70. |
V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Construction of an energy function for A-diffeomorphisms of two-dimensional non-wandering sets on 3-manifolds”, Zhurnal SVMO, 17:3 (2015), 12–17 |
2
|
71. |
V. Z. Grines, O. V. Pochinka, A. A. Shilovskaya, “Topogically pseudocoherent diffeomorphisms of 3-manifolds”, Zhurnal SVMO, 17:2 (2015), 27–33 |
72. |
V. E. Kruglov, O. V. Pochinka, “Multicolored graph as a complete topological invariant
for the flow with a finite number of singular trajectories on
surfaces”, Zhurnal SVMO, 17:1 (2015), 65–70 |
73. |
V. Z. Grines, Yu. A. Levchenko, O. V. Pochinka, “The topological classification of locally direct product of DA-diffeomorphism of a 2-torus and rough diffeomorphism of the circle”, Zhurnal SVMO, 17:1 (2015), 30–36 |
|
2014 |
74. |
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “The Energy Function of Gradient-Like Flows and the Topological Classification Problem”, Mat. Zametki, 96:6 (2014), 856–863 ; Math. Notes, 96:6 (2014), 921–927 |
4
|
75. |
Vyacheslav Z. Grines, Yulia A. Levchenko, Olga V. Pochinka, “On topological classification of diffeomorphisms on 3-manifolds with two-dimensional surface attractors and repellers”, Nelin. Dinam., 10:1 (2014), 17–33 |
7
|
76. |
Vyacheslav Z. Grines, Yulia A. Levchenko, Vladislav S. Medvedev, Olga V. Pochinka, “On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms”, Regul. Chaotic Dyn., 19:4 (2014), 506–512 |
6
|
77. |
V. Z. Grines, S. H. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Mat. Sb., 205:10 (2014), 19–46 ; Sb. Math., 205:10 (2014), 1387–1412 |
15
|
78. |
V. E. Kruglov, O. V. Pochinka, “Energy function as a complete topological invariant for
gradient-like cascades on surfaces”, Zhurnal SVMO, 16:3 (2014), 57–61 |
79. |
T. M. Mitryakova, O. V. Pochinka, “On topological conjugacy of 3-manifolds diffeomorphisms with one orbit of heteroclinic tangency”, Zhurnal SVMO, 16:2 (2014), 76–79 |
80. |
V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Energy function for structurally stable 3-diffeomorphisms with two-dimensional expanding attractor”, Zhurnal SVMO, 16:2 (2014), 20–25 |
81. |
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “On existence of magnetic lines joining zero points”, Zhurnal SVMO, 16:1 (2014), 8–15 |
2
|
|
2013 |
82. |
V. Z. Grines, O. V. Pochinka, “On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere”, Mat. Zametki, 94:6 (2013), 828–845 ; Math. Notes, 94:6 (2013), 862–875 |
9
|
83. |
T. M. Mitryakova, O. V. Pochinka, “Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy”, Mat. Zametki, 93:6 (2013), 902–919 ; Math. Notes, 93:6 (2013), 890–905 |
3
|
84. |
V. Z. Grines, O. V. Pochinka, “Morse–Smale cascades on 3-manifolds”, Uspekhi Mat. Nauk, 68:1(409) (2013), 129–188 ; Russian Math. Surveys, 68:1 (2013), 117–173 |
21
|
85. |
E. A. Grines, O. V. Pochinka, “Necessary conditions for topological conjugacy of 3-manifolds diffeomorphisms with orbits of heteroclinic tangency”, Zhurnal SVMO, 15:4 (2013), 77–90 |
86. |
V. Z. Grines, T. M. Mitryakova, O. V. Pochinka, “Energy function for rough cascades on surfaces with nontrivial one-dimensional basic sets”, Zhurnal SVMO, 15:4 (2013), 9–14 |
87. |
O. V. Pochinka, A. A. Romanov, “The example of a diffeomorfism «source-sink» which does not include to a smooth flow”, Zhurnal SVMO, 15:3 (2013), 123–125 |
88. |
V. Z. Grines, O. V. Pochinka, A. V. Ruzaev, A. N. Saharov, “Energy function as complete topological invariant for the gradient-like flows
with the saddle points of the same Morse index on 3-manifolds”, Zhurnal SVMO, 15:1 (2013), 16–22 |
|
2012 |
89. |
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “Embedding in a Flow of Morse–Smale Diffeomorphisms on Manifolds of Dimension Higher than Two”, Mat. Zametki, 91:5 (2012), 791–794 ; Math. Notes, 91:5 (2012), 742–745 |
7
|
90. |
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “On embedding a Morse-Smale diffeomorphism on a 3-manifold in a topological flow”, Mat. Sb., 203:12 (2012), 81–104 ; Sb. Math., 203:12 (2012), 1761–1784 |
17
|
91. |
I. S. Klykov, O. V. Pochinka, “Rough heteroclinic curves in
neural networks”, Zhurnal SVMO, 14:4 (2012), 77–83 |
92. |
O. V. Pochinka, A. A. Romanov, “Period-doubling bifurcation in a simple arc connecting Pixton's diffeomorphisms”, Zhurnal SVMO, 14:3 (2012), 74–79 |
1
|
93. |
T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Energy function for diffeomorphisms on surfaces with finite hyperbolic chain recurrent set”, Zhurnal SVMO, 14:1 (2012), 98–106 |
2
|
94. |
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “Complete topological invariant of Morse-Smale Diffeomorphism without heteroclinical intersections on Sphere $S^n$ of dimensional greater than three”, Zhurnal SVMO, 14:1 (2012), 16–24 |
95. |
V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Dynamically ordered energy function for Morse–Smale diffeomorphisms on $3$-manifolds”, Trudy Mat. Inst. Steklova, 278 (2012), 34–48 ; Proc. Steklov Inst. Math., 278 (2012), 27–40 |
14
|
|
2011 |
96. |
O. V. Pochinka, “Necessary and sufficient conditions for topological classification of Morse–Smale cascades on 3-manifolds”, Nelin. Dinam., 7:2 (2011), 227–238 |
1
|
97. |
O. V. Pochinka, “Complete topological invariant for Morse-Smale
diffeomorphisms on 3-manifolds”, Zhurnal SVMO, 13:2 (2011), 17–24 |
98. |
T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “On a structure of the space wandering orbits of diffeomorphisms on surfaces with the finite hyperbolic chain recurrent set”, Zhurnal SVMO, 13:1 (2011), 63–70 |
1
|
|
2010 |
99. |
T. M. Mitryakova, O. V. Pochinka, “To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy”, Nelin. Dinam., 6:1 (2010), 91–105 |
3
|
100. |
T. M. Mitryakova, O. V. Pochinka, A. E. Shishenkova, “Dynamics of diffeomorphisms on surfaces with the finite number of
topological conjugacy moduli”, Zhurnal SVMO, 12:2 (2010), 77–85 |
101. |
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Trudy Mat. Inst. Steklova, 271 (2010), 111–133 ; Proc. Steklov Inst. Math., 271 (2010), 103–124 |
50
|
102. |
T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Trudy Mat. Inst. Steklova, 270 (2010), 198–219 ; Proc. Steklov Inst. Math., 270 (2010), 194–215 |
10
|
|
2009 |
103. |
V. Grines, F. Laudenbach, O. Pochinka, “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Mosc. Math. J., 9:4 (2009), 801–821 |
15
|
104. |
V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Quasi-Energy Function for Diffeomorphisms with Wild Separatrices”, Mat. Zametki, 86:2 (2009), 175–183 ; Math. Notes, 86:2 (2009), 163–170 |
6
|
105. |
V. Z. Grines, O. V. Pochinka, A. E. Shishenkova, L. A. Kuprina, “$f$-adapted filtration for Morse-Smale diffeomorphisms”, Trudy SVMO, 11:2 (2009), 26–34 |
106. |
T. M. Mitryakova, O. V. Pochinka, “Realization of abstract scheme by diffeomorphism of surface with a finite number of moduli stability.”, Trudy SVMO, 11:1 (2009), 89–98 |
|
2008 |
107. |
T. M. Mitryakova, O. V. Pochinka, “Sufficient conditions of topological conjugacy of diffeomorphisms with heteroclinic contacts on surfaces”, Trudy SVMO, 10:2 (2008), 166–176 |
108. |
V. Z. Grines, O. V. Pochinka, A. E. Shishenkova, “Lyapunov functions for dynamical systems”, Trudy SVMO, 10:2 (2008), 11–20 |
109. |
O. V. Pochinka, E. A. Talanova, “Topological conjugacy of gradient-like diffeomorphisms with unique heteroclinic curve on $\mathbf{S}^3$”, Trudy SVMO, 10:1 (2008), 241–250 |
110. |
V. Z. Grines, O. V. Pochinka, A. E. Shishenkova, “Diffeomorphisms of 3-sphere with wild frame of separatrices”, Trudy SVMO, 10:1 (2008), 132–137 |
|
2007 |
111. |
C. Bonatti, V. Z. Grines, V. S. Medvedev, O. V. Pochinka, “Bifurcations of Morse–Smale Diffeomorphisms with Wildly Embedded Separatrices”, Trudy Mat. Inst. Steklova, 256 (2007), 54–69 ; Proc. Steklov Inst. Math., 256 (2007), 47–61 |
15
|
|
2005 |
112. |
Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Classification of Morse–Smale Diffeomorphisms with a Finite Set of Heteroclinic Orbits on 3-Manifolds”, Trudy Mat. Inst. Steklova, 250 (2005), 5–53 ; Proc. Steklov Inst. Math., 250 (2005), 1–46 |
28
|
|
|
|
2022 |
113. |
O. N. Ageev, Ya. B. Vorobets, B. Weiss, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, L. S. Efremova, A. Yu. Zhirov, E. V. Zhuzhoma, B. S. Kashin, V. N. Kolokoltsov, A. V. Kochergin, L. M. Lerman, I. V. Mykytyuk, V. I. Oseledets, A. Yu. Plakhov, O. V. Pochinka, V. V. Ryzhikov, V. Zh. Sakbaev, A. G. Sergeev, Ya. G. Sinai, A. T. Tagi-Zade, S. V. Tikhonov, J.-P. Thouvenot, A. Ya. Helemskii, A. I. Shafarevich, “Anatolii Mikhailovich Stepin (obituary)”, Uspekhi Mat. Nauk, 77:2(464) (2022), 189–194 ; Russian Math. Surveys, 77:2 (2022), 361–367 |
|
2021 |
114. |
O. V. Anashkin, P. M. Akhmet'ev, D. V. Balandin, M. K. Barinova, I. V. Boykov, A. N. Bezdenezhnyh, V. N. Belykh, P. A. Vel'misov, I. Yu. Vlasenko, O. E. Galkin, S. Yu. Galkina, V. K. Gorbunov, S. D. Glyzin, S. V. Gonchenko, A. S. Gorodetski, E. V. Gubina, E. Ya. Gurevich, A. A. Davydov, L. S. Efremova, R. V. Zhalnin, A. Yu. Zhirov, E. V. Zhuzhoma, N. I. Zhukova, S. Kh. Zinina, Yu. S. Ilyashenko, N. V. Isaenkova, A. O. Kazakov, A. V. Klimenko, S. A. Komech, Yu. A. Kordyukov, V. E. Kruglov, E. V. Kruglov, E. B. Kuznetsov, S. K. Lando, Yu. A. Levchenko, L. M. Lerman, S. I. Maksimenko, M. I. Malkin, D. S. Malyshev, V. K. Mamaev, T. Ph. Mamedova, V. S. Medvedev, T. V. Medvedev, D. I. Mints, T. M. Mitryakova, A. D. Morozov, A. I. Morozov, E. V. Nozdrinova, E. N. Pelinovsky, Ya. B. Pesin, A. S. Pikovsky, S. Yu. Pilyugin, G. M. Polotovsky, O. V. Pochinka, I. D. Remizov, P. E. Ryabov, A. S. Skripchenko, A. V. Slunyaev, S. V. Sokolov, L. A. Sukharev, E. A. Talanova, V. A. Timorin, S. B. Tikhomirov, V. F. Tishkin, D. V. Treschev, D. V. Turaev, N. G. Chebochko, E. E. Chilina, P. A. Shamanaev, D. D. Shubin, E. I. Yakovlev, “To the 75th anniversary of Vyacheslav Zigmundovich Grines”, Zhurnal SVMO, 23:4 (2021), 472–476 |
|
2020 |
115. |
I. V. Boykov, P. A. Vel'misov, È. R. Gizzatova, V. K. Gorbunov, V. Z. Grines, I. M. Gubaydullin, Yu. N. Deryugin, E. V. Desyaev, D. K. Egorova, A. P. Zhabko, R. V. Zhalnin, A. S. Ismagilova, V. N. Krizsky, E. B. Kuznetsov, T. Ph. Mamedova, N. D. Morozkin, S. M. Muryumin, S. A. Mustafina, O. V. Pochinka, I. P. Ryazantseva, K. B. Sabitov, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “In memory of Spivak Semen Izrailevich”, Zhurnal SVMO, 22:4 (2020), 463–466 |
|
2018 |
116. |
A. S. Andreev, A. V. Ankilov, T. E. Badokina, D. I. Boyarkin, I. V. Boykov, D. K. Egorova, V. Z. Grines, S. A. Grishina, V. K. Gorbunov, Yu. N. Deryugin, E. V. Desyaev, R. V. Zhalnin, I. V. Konopleva, L. R. Kim-Tyan, V. N. Krizsky, S. I. Martynov, T. Ph. Mamedova, S. M. Muryumin, E. E. Peskova, Yu. V. Pokladova, O. V. Pochinka, V. P. Radchenko, I. P. Ryazantseva, S. I. Spivak, L. A. Sukharev, A. O. Syromyasov, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, O. S. Yazovtseva, N. G. Yarushkina, A.-V. Ion, “Velmisov Petr Aleksandrovich (on his seventieth birthday)”, Zhurnal SVMO, 20:3 (2018), 338–340 |
117. |
A. S. Andreev, A. N. Andronov, T. E. Badokina, D. I. Boyarkin, I. V. Boykov, P. A. Vel'misov, V. Z. Grines, S. A. Grishina, V. K. Gorbunov, Yu. N. Deryugin, A. P. Zhabko, R. V. Zhalnin, I. V. Konopleva, L. R. Kim-Tyan, V. N. Krizsky, T. Ph. Mamedova, S. M. Muryumin, O. V. Pochinka, I. P. Ryazantseva, N. V. Savinov, A. R. Sibireva, L. A. Sukharev, V. F. Tishkin, E. V. Foliadova, I. I. Chuchaev, P. A. Shamanaev, N. G. Yarushkina, “In memory of Boris Vladimirovich Loginov”, Zhurnal SVMO, 20:1 (2018), 103–106 |
|
2017 |
118. |
E. N. Artem'eva, I. V. Boykov, M. A. Borisov, D. I. Boyarkin, P. A. Vel'misov, V. K. Gorbunov, T. A. Gorshunova, V. Z. Grines, Yu. N. Deryugin, E. V. Desyaev, D. K. Egorova, R. V. Zhalnin, O. E. Kaledin, V. N. Krizsky, E. B. Kuznetsov, B. V. Loginov, T. Ph. Mamedova, S. I. Martynov, N. D. Morozkin, S. M. Muryumin, I. P. Nikitin, O. V. Pochinka, D. V. Pashutkin, A. Yu. Pavlov, E. E. Peskova, I. P. Ryazantseva, V. I. Safonkin, G. A. Smolkin, S. I. Spivak, L. A. Sukharev, A. O. Syromyasov, M. T. Terekhin, V. F. Tishkin, S. A. Firsova, E. A. Chernoivanova, I. I. Chuchaev, P. A. Shamanaev, O. S. Yazovtseva, Z. Ya. Yakupov, “On the 80th anniversary of professor E.V. Voskresensky's birthday”, Zhurnal SVMO, 19:4 (2017), 95–99 |
|
2016 |
119. |
S. V. Gonchenko, E. V. Zhuzhoma, E. Ya. Gurevich, L. M. Lerman, O. V. Pochinka, V. F. Tishkin, I. I. Chuchaev, L. A. Sukharev, P. A. Shamanaev, R. V. Zhalnin, T. Ph. Mamedova, “Вячеслав Зигмундович Гринес (к семидесятилетию со дня рождения)”, Zhurnal SVMO, 18:4 (2016), 168–171 |
|
2010 |
120. |
V. Grines, O. Pochinka, “Energy functions for dynamical systems”, Regul. Chaotic Dyn., 15:2-3 (2010), 185–193 |
|
Presentations in Math-Net.Ru |
1. |
Andronov School of Nonlinear Oscillations O. V. Pochinka
Joint Mathematical seminar of Saint Petersburg State University and Peking University March 14, 2024 15:00
|
2. |
On the dynamics of 3-homeomorphisms with two-dimensional attractors and repellers E. E. Chilina, V. Z. Grines, O. V. Pochinka
International conference “Ergodic Theory and Related Topics” November 24, 2022 15:00
|
3. |
Quasi-energy function for Pixton diffeomorphisms O. V. Pochinka
International conference “Ergodic Theory and Related Topics” November 21, 2022 12:10
|
4. |
Hopf knot as a complete invariant of Morse–Smale diffeomorphisms on the 3-sphere O. V. Pochinka
International Conference “Differential Equations and Optimal Control” dedicated to the centenary of the birth of Academician Evgenii Frolovich Mishchenko June 8, 2022 10:15
|
5. |
3-Diifeomorphisms with Dynamics “One-Dimensional Surfaced Attractor-Repeller” O. V. Pochinka
Regular and Chaotic Dynamics November 23, 2021 14:00
|
6. |
3-Diffeomorphisms with dynamics “one-dimensional surfaced attractor-repeller” O. V. Pochinka
Conference «Hyperbolic Dynamics and Structural Stability» Dedicated to the 85th Anniversary of D. V. Anosov November 11, 2021 14:00
|
7. |
О структурной устойчивости 3-диффеоморфизмов с одномерными аттрактором и репеллером O. V. Pochinka
August 9, 2021 14:30
|
8. |
Топологическая классификация диффеоморфизмов Морса-Смейла O. V. Pochinka
Modern geometry methods May 13, 2021 17:00
|
9. |
Топологическая классификация диффеоморфизмов Морса-Смейла O. V. Pochinka
Modern geometry methods April 7, 2021 19:00
|
10. |
On the embedding of Morse Smale diffeomorphisms in a topological flow O. V. Pochinka, V. Z. Grines, E. Ya. Gurevich
One-Parameter Semigroups of Operators (OPSO) 2021 April 5, 2021 16:10
|
11. |
Topological objects in invariant sets of dynamical systems O. V. Pochinka
Dynamics in Siberia - 2019 February 28, 2019 12:50
|
12. |
Topological classification of Morse–Smale systems O. V. Pochinka
International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin December 14, 2018 09:45
|
13. |
On Palis Problem of Embedding of Morse–Smale Cascades into Flows O. V. Pochinka
International conference «Real and Complex Dynamical Systems», dedicated to the to the 75th anniversary of Yu. S. Il'yashenko November 27, 2018 16:05
|
14. |
On topological classification of Morse–Smale systems O. V. Pochinka
International Conference “Anosov Systems and Modern Dynamics” dedicated to the 80th anniversary of Dmitry Anosov December 22, 2016 12:55
|
15. |
Energy Function for structurally stable 3-diffeomorphisms with two-dimensional expanding attractor O. V. Pochinka
International Conference on Differential Equations and Dynamical Systems July 5, 2014 15:00
|
16. |
О топологической классификации диффеоморфизмов Морса–Смейла и их вложимости в потоки V. Z. Grines, O. V. Pochinka
Seminar "Optimal Control and Dynamical Systems" April 18, 2012 13:00
|
17. |
Энергетическая функция для диффеоморфизмов Морса–Смейла на 3-многообразиях V. Z. Grines, O. V. Pochinka
Seminar "Optimal Control and Dynamical Systems" May 14, 2008 12:00
|
|
|
Organisations |
|
|
|
|