|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
A. L. Kazakov, L. F. Spevak, “On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234 (2024), 59–66 |
2. |
A. L. Kazakov, L. F. Spevak, “Diffusion wave initiation problem for a nonlinear parabolic system in the case of spherical and cylindrical symmetry”, Prikl. Mekh. Tekh. Fiz., 65:4 (2024), 97–108 ; J. Appl. Mech. Tech. Phys., 65:4 (2024), 677–687 |
3. |
A. L. Kazakov, O. A. Nefedova, L. F. Spevak, “Solution to a two-dimensional nonlinear parabolic heat equation subject to a boundary condition specified on a moving manifold”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 283–303 ; Comput. Math. Math. Phys., 64:2 (2024), 266–284 |
1
|
|
2023 |
4. |
O. A. Nefedova, L. F. Spevak, A. L. Kazakov, Lee Ming-Gong, “Solution to a two-dimensional nonlinear heat equation using null field method”, Computer Research and Modeling, 15:6 (2023), 1449–1467 |
5. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “On some zero-front solutions of an evolution parabolic system”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023), 80–88 |
6. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “The Problem of Diffusion Wave Initiation for a Nonlinear Second-Order Parabolic System”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023), 67–86 ; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S109–S126 |
1
|
|
2022 |
7. |
L. F. Spevak, O. A. Nefedova, “Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions”, Computer Research and Modeling, 14:1 (2022), 9–22 |
2
|
8. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022), 54–62 |
9. |
A. L. Kazakov, L. F. Spevak, “Solutions to a nonlinear degenerating reaction–diffusion system of the type of diffusion waves with two fronts”, Prikl. Mekh. Tekh. Fiz., 63:6 (2022), 104–115 ; J. Appl. Mech. Tech. Phys., 63:6 (2022), 995–1004 |
2
|
|
2021 |
10. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “On solutions of the traveling wave type for the nonlinear heat equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 196 (2021), 36–43 |
1
|
11. |
A. L. Kazakov, L. F. Spevak, “Exact and approximate solutions to the degenerated reaction–diffusion system”, Prikl. Mekh. Tekh. Fiz., 62:4 (2021), 169–180 ; J. Appl. Mech. Tech. Phys., 62:4 (2021), 673–683 |
5
|
12. |
A. L. Kazakov, L. F. Spevak, “Exact and approximate solutions of a problem with a special feature for a convection-diffusion equation”, Prikl. Mekh. Tekh. Fiz., 62:1 (2021), 22–31 ; J. Appl. Mech. Tech. Phys., 62:1 (2021), 18–26 |
2
|
13. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system”, Sib. Zh. Ind. Mat., 24:4 (2021), 64–78 |
5
|
|
2020 |
14. |
A. L. Kazakov, L. F. Spevak, “Approximate and exact solutions to the singular nonlinear heat equation with a common type of nonlinearity”, Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 18–34 |
2
|
15. |
Alexander L. Kazakov, Lev F. Spevak, Lee Ming-Gong, “On the construction of solutions to a problem with a free boundary for the non-linear heat equation”, J. Sib. Fed. Univ. Math. Phys., 13:6 (2020), 694–707 |
2
|
|
2019 |
16. |
A. L. Kazakov, O. A. Nefedova, L. F. Spevak, “Solution of the problem of initiating the heat wave for a nonlinear heat conduction equation using the boundary element method”, Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019), 1047–1062 ; Comput. Math. Math. Phys., 59:6 (2019), 1015–1029 |
20
|
|
2018 |
17. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “On a three-dimensional heat wave generated by boundary condition specified on a time-dependent manifold”, Bulletin of Irkutsk State University. Series Mathematics, 26 (2018), 16–34 |
1
|
|
2016 |
18. |
A. L. Kazakov, L. F. Spevak, O. A. Nefedova, “Solution of a two-dimensionel problem on the motion of a heat wave front with the use of power series and the boundary element method”, Bulletin of Irkutsk State University. Series Mathematics, 18 (2016), 21–37 |
|
2015 |
19. |
A. L. Kazakov, L. F. Spevak, “Numerical and analytical study of processes described by the nonlinear heat equation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015), 42–48 |
|
2014 |
20. |
A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “On a degenerate boundary value problem for the porous medium equation in spherical coordinates”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 119–129 |
16
|
|
2012 |
21. |
A. L. Kazakov, L. F. Spevak, “Boundary element method and power series method for one-dimensional non-linear filtration problems”, Bulletin of Irkutsk State University. Series Mathematics, 5:2 (2012), 2–17 |
8
|
|
2010 |
22. |
V. P. Fedotov, L. F. Spevak, “Применение аналитического интегрирования в методе граничных элементов для анализа многосвязных упругих областей”, Matem. Mod. Kraev. Zadachi, 1 (2010), 384–387 |
|
2008 |
23. |
V. P. Fedotov, L. F. Spevak, “Application of the modified boundary element method for solving elasto-plastic problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008), 118–125 |
|
2007 |
24. |
V. P. Fedotov, L. F. Spevak, “The analytical integration of influense functions for solving elastic and potential problems by the boundary element method”, Mat. Model., 19:2 (2007), 87–104 |
4
|
25. |
V. P. Fedotov, L. F. Spevak, V. B. Trukhin, “Stress calculation by the boundary element method using analytical integration”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007), 79–84 |
4
|
|
2006 |
26. |
V. P. Fedotov, L. F. Spevak, V. V. Privalova, “Модификация метода граничных элементов для моделирования трехмерных упругих задач”, Matem. Mod. Kraev. Zadachi, 1 (2006), 231–234 |
27. |
V. P. Fedotov, L. F. Spevak, “К аналитическому вычислению интегралов в численно-аналитическом методе решения задач деформирования”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 43 (2006), 91–98 |
3
|
28. |
V. L. Kolmogorov, V. P. Fedotov, L. F. Spevak, N. A. Babailov, V. B. Trukhin, “Решение нестационарных температурных и термомеханических задач методом разделения переменных в вариационной постановке”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 42 (2006), 72–75 |
2
|
|
2005 |
29. |
V. P. Fedotov, V. V. Privalova, L. F. Spevak, “Математическое моделирование краевых задач упругости и диффузии с помощью параллельных алгоритмов”, Matem. Mod. Kraev. Zadachi, 1 (2005), 287–290 |
1
|
|
2004 |
30. |
V. P. Fedotov, L. F. Spevak, V. V. Privalova, V. B. Trukhin, “Решение двумерных и трёхмерных задач теории упругости с использованием параллельных алгоритмов вычислений”, Matem. Mod. Kraev. Zadachi, 1 (2004), 237–242 |
31. |
V. P. Fedotov, L. F. Spevak, V. B. Trukhin, V. V. Privalova, T. D. Dumsheva, E. S. Zenkova, “Convergence studying of numerical-analytic method for solving elasticity, heat-conduction and diffusion problems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 30 (2004), 55–62 |
7
|
|
2000 |
32. |
V. P. Fedotov, L. F. Spevak, “Solution of dynamic plasticity problems by using of the variables separation method based on the variational formulation”, Mat. Model., 12:7 (2000), 36–40 |
2
|
|
Organisations |
|
|
|
|