Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Dyakonov, Alexander Gennadievich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 20
Presentations: 1

Number of views:
This page:4279
Abstract pages:6047
Full texts:3883
References:743
Dyakonov, Alexander Gennadievich
Professor of Russian Academy of Sciences
Associate professor
Doctor of physico-mathematical sciences (2009)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
Website: https://dyakonov.org/ag
Keywords: Data Mining, Algorithm, Classification, Regression, Forecast, Recommendation, Artificial Intelligence, Function, Interpolation, DNF, Efficiency, Correctness, Algebra
UDC: 519.71, 519.714, 519.712, 519.712.63, 519.7, 519.719.1
MSC: 68T99, 68T10, 03B50, 94C10

Subject:

Data Mining, Data Science, Machine Learning, Discrete Mathematics, Artificial Intelligence

   
Main publications:
  • ... in the process of writing

https://www.mathnet.ru/eng/person30404
https://ru.wikipedia.org/wiki/Dyakonov,_Aleksandr_Gennadevich
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/657189
https://elibrary.ru/author_items.asp?authorid=126076
ISTINA https://istina.msu.ru/workers/471644
https://orcid.org/0000-0001-7934-6538
https://www.webofscience.com/wos/author/record/AAI-4230-2021
https://www.scopus.com/authid/detail.url?authorId=7004017335

Publications in Math-Net.Ru Citations
2023
1. A. V. Medvedev, A. G. Dyakonov, “Towards efficient learning of GNN on high-dimensional multi-layered representations of tabular data”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  118–125  mathnet  elib; Dokl. Math., 108:suppl. 2 (2023), S265–S271
2. R. L. Vasilev, A. G. Dyakonov, “Deep metric learning: loss functions comparison”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  60–71  mathnet  elib; Dokl. Math., 108:suppl. 2 (2023), S215–S225
3. P. D. Shtykov, A. G. Dyakonov, “A generalized dialogue graph construction and visualization based on a corpus of dialogues”, Prikl. Diskr. Mat., 2023, no. 59,  111–127  mathnet
2020
4. A. G. Dyakonov, A. M. Golovina, “Completeness criteria for a linear model of classification algorithms with respect to families of decision rules”, Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  67–70  mathnet  zmath  elib; Dokl. Math., 101:1 (2020), 57–59
2014
5. S. V. Ablameyko, A. S. Biryukov, A. A. Dokukin, A. G. D'yakonov, Yu. I. Zhuravlev, V. V. Krasnoproshin, V. A. Obraztsov, M. Yu. Romanov, V. V. Ryazanov, “Practical algorithms for algebraic and logical correction in precedent-based recognition problems”, Zh. Vychisl. Mat. Mat. Fiz., 54:12 (2014),  1979–1993  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 54:12 (2014), 1915–1928  isi  elib  scopus 10
2012
6. A. G. Dyakonov, “Criteria for the singularity of a pairwise $l_1$-distance matrix and their generalizations”, Izv. RAN. Ser. Mat., 76:3 (2012),  93–110  mathnet  mathscinet  zmath  elib; Izv. Math., 76:3 (2012), 517–534  isi  elib  scopus
2011
7. A. G. D'yakonov, “Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II”, Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011),  529–544  mathnet  mathscinet; Comput. Math. Math. Phys., 51:3 (2011), 490–504  isi  scopus 5
2010
8. A. G. D'yakonov, “Theory of equivalence systems for the description of algebraic closures in a generalized model for the computation of estimates”, Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010),  388–400  mathnet  mathscinet; Comput. Math. Math. Phys., 50:2 (2010), 369–381  isi  scopus 9
2009
9. A. G. D'yakonov, “Algebra over estimation algorithms: Normalization with respect to the interval”, Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  200–208  mathnet  mathscinet; Comput. Math. Math. Phys., 49:1 (2009), 194–202  isi  scopus 3
2008
10. A. G. D'yakonov, “Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  916–927  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 48:5 (2008), 866–876  isi  scopus 2
2007
11. A. G. D'yakonov, “Algebra over estimation algorithms: Normalization and division”, Zh. Vychisl. Mat. Mat. Fiz., 47:6 (2007),  1099–1109  mathnet; Comput. Math. Math. Phys., 47:6 (2007), 1050–1060  scopus 4
2005
12. A. G. D'yakonov, “An algebra over estimation algorithms: monotone decision rules”, Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1893–1904  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:10 (2005), 1822–1832 3
13. A. G. D'yakonov, “Algebra over estimation algorithms: the minimal degree of correct algorithms”, Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005),  1134–1145  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:6 (2005), 1095–1106 10
2004
14. A. G. D'yakonov, “Codings and their use in the DNF implementation of binary functions”, Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1511–1520  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:8 (2004), 1435–1444
2003
15. A. G. D'yakonov, “Construction of disjunctive normal forms by consecutive multiplication”, Zh. Vychisl. Mat. Mat. Fiz., 43:10 (2003),  1589–1600  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:10 (2003), 1529–1540 1
2002
16. A. G. D'yakonov, “Construction of disjunctive normal forms in algorithms of pattern recognition”, Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1899–1907  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:12 (2002), 1824–1832 4
17. A. G. D'yakonov, “Test approach to the implementation of Boolean functions with few zeros by disjunctive normal forms”, Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  924–928  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:6 (2002), 889–893 8
2001
18. A. G. D'yakonov, “Implementation of a class of Boolean functions with a small number of zeros by irredundant disjunctive normal forms”, Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001),  821–828  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 41:5 (2001), 775–782 6
2000
19. A. G. D'yakonov, “On the choice of a system of support sets for an efficient implementation of recognition algorithms of the estimate-computing type”, Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  1104–1118  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 40:7 (2000), 1060–1074 2
1999
20. A. G. D'yakonov, “Efficient formulas for computing estimates for recognition algorithms with arbitrary systems of support sets”, Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1904–1918  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:11 (1999), 1829–1843

Presentations in Math-Net.Ru
1. Алгебраический подход к анализу данных и его приложения
A. G. D'yakonov
Conference of Professors of the RAS in the Department of Mathematical Sciences of the Russian Academy of Sciences
June 15, 2016 15:25   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024