|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
V. N. Solev, “Approximation of spectral density and accuracy in the estimation problem”, Zap. Nauchn. Sem. POMI, 535 (2024), 255–268 |
|
2023 |
2. |
V. N. Solev, “BMO space and the problem of estimating a function in stationary noise”, Zap. Nauchn. Sem. POMI, 526 (2023), 193–206 |
1
|
|
2022 |
3. |
V. N. Solev, “Comparison of projector operators in the weighted space”, Zap. Nauchn. Sem. POMI, 515 (2022), 189–198 |
|
2021 |
4. |
V. N. Solev, “The lower bound of the minimax risk in a problem of estimating the function in stationary gaussian noise”, Zap. Nauchn. Sem. POMI, 505 (2021), 282–293 |
1
|
|
2020 |
5. |
V. N. Solev, “Estimation of a function in a Gaussian stationary noise”, Zap. Nauchn. Sem. POMI, 495 (2020), 277–290 |
2
|
|
2019 |
6. |
V. N. Solev, “Estimation of a vector valued function in a Gaussian stationary noise”, Zap. Nauchn. Sem. POMI, 486 (2019), 275–285 |
3
|
|
2018 |
7. |
V. N. Solev, “Estimation of function in Gaussian stationary noise: new spectral condition”, Zap. Nauchn. Sem. POMI, 474 (2018), 222–232 |
|
2017 |
8. |
V. N. Solev, “A local version of the Muckenhoupt condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise”, Zap. Nauchn. Sem. POMI, 466 (2017), 289–299 |
4
|
|
2016 |
9. |
V. N. Solev, “Adaptive estimation of function observed in Gaussian stationary noise”, Zap. Nauchn. Sem. POMI, 454 (2016), 261–275 ; J. Math. Sci. (N. Y.), 229:6 (2018), 772–781 |
7
|
|
2015 |
10. |
V. N. Solev, “Estimation of function observed in stationary noise: discretization”, Zap. Nauchn. Sem. POMI, 441 (2015), 286–298 ; J. Math. Sci. (N. Y.), 219:5 (2016), 798–806 |
8
|
|
2014 |
11. |
V. N. Solev, “Mackenhoupt condition and an estimating problem”, Zap. Nauchn. Sem. POMI, 431 (2014), 186–197 ; J. Math. Sci. (N. Y.), 214:4 (2016), 546–553 |
2
|
|
2011 |
12. |
V. N. Solev, “Estumation of density on indirect observation”, Zap. Nauchn. Sem. POMI, 396 (2011), 204–212 ; J. Math. Sci. (N. Y.), 188:6 (2013), 753–757 |
|
2007 |
13. |
C. Huber, V. N. Solev, I. Vonta, “Maximum likelihood estimator: the nonparametric approach”, Zap. Nauchn. Sem. POMI, 341 (2007), 220–228 ; J. Math. Sci. (N. Y.), 147:4 (2007), 6975–6979 |
|
2006 |
14. |
V. N. Solev, “Minimum distance estimators”, Zap. Nauchn. Sem. POMI, 339 (2006), 151–162 ; J. Math. Sci. (N. Y.), 145:2 (2007), 4923–4930 |
|
2005 |
15. |
V. N. Solev, L. Gerville-Reache, “Large Toeplitz operators and quadratic form generated by stationary Gaussian sequence”, Zap. Nauchn. Sem. POMI, 328 (2005), 221–229 ; J. Math. Sci. (N. Y.), 139:3 (2006), 6625–6630 |
1
|
|
2004 |
16. |
V. N. Solev, F. Haghighi, “Estimation in a model with infinite dimensional nuisance parameter”, Zap. Nauchn. Sem. POMI, 320 (2004), 160–165 ; J. Math. Sci. (N. Y.), 137:1 (2006), 4567–4570 |
|
2001 |
17. |
V. N. Solev, A. Zerbet, “Conditions of the local asymptotic normality for Gaussian stationary random processes”, Zap. Nauchn. Sem. POMI, 278 (2001), 225–247 ; J. Math. Sci. (N. Y.), 118:6 (2003), 5635–5649 |
12
|
|
1999 |
18. |
V. N. Solev, Ch. Bulot, “Prediction problems and Hunt–Muckenhoupt–Wheeden condition”, Zap. Nauchn. Sem. POMI, 260 (1999), 73–83 ; J. Math. Sci. (New York), 109:6 (2002), 2079–2087 |
1
|
|
1997 |
19. |
V. N. Solev, L. Gerville-Reache, “The estimation of a function being observed with a stationary error”, Zap. Nauchn. Sem. POMI, 244 (1997), 271–284 ; J. Math. Sci. (New York), 99:2 (2000), 1182–1190 |
2
|
|
1996 |
20. |
V. N. Solev, “The accuracy of the least square method”, Zap. Nauchn. Sem. POMI, 228 (1996), 294–299 ; J. Math. Sci. (New York), 93:3 (1999), 443–446 |
2
|
|
1994 |
21. |
V. N. Solev, “The problem of compensation”, Zap. Nauchn. Sem. POMI, 216 (1994), 144–152 ; J. Math. Sci. (New York), 88:1 (1998), 99–105 |
|
1992 |
22. |
V. N. Solev, “On a condition of local regularity”, Zap. Nauchn. Sem. LOMI, 194 (1992), 141–149 ; J. Math. Sci., 75:5 (1995), 1963–1968 |
|
1989 |
23. |
V. N. Solev, “The operator of canonical correlation and relatively regular processes”, Zap. Nauchn. Sem. LOMI, 177 (1989), 145–147 ; J. Soviet Math., 61:1 (1992), 1923–1925 |
|
1988 |
24. |
V. N. Solev, “The condition of mutual absolute continuity of two Gaussian measures corresponding to a stationary process and asymptotic behaviour of the reproducing kernel”, Zap. Nauchn. Sem. LOMI, 166 (1988), 164–166 |
|
1986 |
25. |
V. N. Solev, K. A. Tserhtsvadze, “A basic condition for the stationary vector sequence”, Zap. Nauchn. Sem. LOMI, 153 (1986), 138–152 |
|
1985 |
26. |
V. N. Solev, “A condition for the mutual absolute continuity of Gaussian measures, generated by a stationary process”, Zap. Nauchn. Sem. LOMI, 142 (1985), 160–163 ; J. Soviet Math., 36:4 (1987), 546–548 |
|
1982 |
27. |
V. N. Solev, “Gaussian $f$-regular processes and asymptotic behavior of likelihood function”, Zap. Nauchn. Sem. LOMI, 119 (1982), 203–217 |
1
|
|
1980 |
28. |
V. N. Solev, “Approximation of a reproducing kernel”, Zap. Nauchn. Sem. LOMI, 97 (1980), 195–198 ; J. Soviet Math., 24:5 (1984), 617–620 |
|
1978 |
29. |
I. A. Ibragimov, V. N. Solev, “2.3. Analytic problems of the theory of stochastic processes”, Zap. Nauchn. Sem. LOMI, 81 (1978), 70–72 ; J. Soviet Math., 26:5 (1984), 2133–2134 |
3
|
30. |
V. N. Solev, “Aproximation of gaussian measures generated by statinary processes and smoothly dependeted of parameter”, Zap. Nauchn. Sem. LOMI, 79 (1978), 44–66 ; J. Soviet Math., 36:5 (1987), 600–616 |
|
1977 |
31. |
V. N. Solev, “Conditionally regular processes”, Zap. Nauchn. Sem. LOMI, 72 (1977), 140–149 ; J. Soviet Math., 23:3 (1983), 2320–2327 |
2
|
|
1976 |
32. |
V. N. Solev, “The information in the additive-nois scheme”, Zap. Nauchn. Sem. LOMI, 55 (1976), 117–127 ; J. Soviet Math., 16:2 (1981), 996–1004 |
2
|
|
1975 |
33. |
V. N. Solev, “Third order spectral measure for a stationary process”, Dokl. Akad. Nauk SSSR, 224:3 (1975), 546–548 |
|
1974 |
34. |
V. N. Solev, “On a continuous analogue of a Szegő theorem”, Zap. Nauchn. Sem. LOMI, 39 (1974), 104–109 |
1
|
|
1972 |
35. |
V. N. Solev, “The absolute regularity condition for fields”, Zap. Nauchn. Sem. LOMI, 29 (1972), 27–29 |
36. |
V. N. Solev, “The average over a unit of time of the amount of information contained in one stationary Gaussian process with respect to another”, Zap. Nauchn. Sem. LOMI, 29 (1972), 18–26 |
|
1971 |
37. |
V. N. Solev, “Absolutely regular trajectories in the Hilbert space”, Zap. Nauchn. Sem. LOMI, 22 (1971), 139–160 |
2
|
|
1969 |
38. |
I. A. Ibragimov, V. N. Solev, “A condition for the regularity of a Gaussian stationary process”, Dokl. Akad. Nauk SSSR, 185:3 (1969), 509–512 |
3
|
39. |
V. N. Solev, “The asymptotics of the prediction error in the multi-dimensional case”, Dokl. Akad. Nauk SSSR, 185:1 (1969), 43–46 |
40. |
V. N. Solev, “Asymptotic, behavior of the prediction error in multidimensional case”, Zap. Nauchn. Sem. LOMI, 12 (1969), 146–156 |
41. |
V. N. Solev, “On a condition of linear regularity of stationary vector-valued sequence”, Zap. Nauchn. Sem. LOMI, 12 (1969), 126–145 |
2
|
42. |
I. A. Ibragimov, V. N. Solev, “On a condition of regularity of the gaussian stationary sequence”, Zap. Nauchn. Sem. LOMI, 12 (1969), 113–125 |
4
|
|
1968 |
43. |
I. A. Ibragimov, V. N. Solev, “The asymptotic behavior of the prediction error of a stationary sequence with a spectral density of special type”, Teor. Veroyatnost. i Primenen., 13:4 (1968), 746–750 ; Theory Probab. Appl., 13:4 (1968), 703–707 |
10
|
|
|
|
2020 |
44. |
A. N. Borodin, A. Yu. Zaitsev, I. A. Ibragimov, M. A. Lifshits, V. N. Solev, “In memory of M. S. Nikulin”, Zap. Nauchn. Sem. POMI, 495 (2020), 7–8 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|