|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
V. A. Baranskii, I. A. Nasyrov, T. A. Senchonok, “$4$-graceful trees”, Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024), 64–76 |
|
2023 |
2. |
V. A. Baranskii, T. A. Senchonok, “Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 24–35 |
2
|
3. |
Vitaly A. Baranskii, Tatiana A. Senchonok, “On sequences of elementary transformations in the integer partitions lattice”, Ural Math. J., 9:2 (2023), 36–45 |
4. |
Vitaly A. Baransky, Tatiana A. Senchonok, “Around the ErdÖs–Gallai criterion”, Ural Math. J., 9:1 (2023), 29–48 |
1
|
|
2022 |
5. |
V. A. Baranskii, T. A. Senchonok, “An algorithm for taking a bipartite graph to the bipartite threshold form”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 54–63 |
1
|
|
2020 |
6. |
V. A. Baransky, T. A. Senchonok, “On maximal graphical partitions that are the nearest to a given graphical partition”, Sib. Èlektron. Mat. Izv., 17 (2020), 338–363 |
3
|
7. |
V. A. Baranskii, T. A. Senchonok, “Bipartite threshold graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 56–67 |
2
|
|
2018 |
8. |
V. A. Baransky, T. A. Senchonok, “On the shortest sequences of elementary transformations in the partition lattice”, Sib. Èlektron. Mat. Izv., 15 (2018), 844–852 |
5
|
|
2017 |
9. |
V. A. Baransky, T. A. Senchonok, “On maximal graphical partitions”, Sib. Èlektron. Mat. Izv., 14 (2017), 112–124 |
3
|
10. |
V. A. Baranskii, T. A. Senchonok, “On threshold graphs and realizations of graphical partitions”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 22–31 |
2
|
|
2016 |
11. |
V. A. Baranskii, T. A. Koroleva, T. A. Senchonok, “On the partition lattice of all integers”, Sib. Èlektron. Mat. Izv., 13 (2016), 744–753 |
7
|
12. |
V. A. Baransky, T. I. Nadymova, T. A. Senchonok, “A new algorithm generating graphical sequences”, Sib. Èlektron. Mat. Izv., 13 (2016), 269–279 |
3
|
|
2015 |
13. |
V. A. Baranskii, T. A. Koroleva, T. A. Senchonok, “On the partition lattice of an integer”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 30–36 |
7
|
|
2011 |
14. |
V. A. Baranskii, T. A. Sen'chonok, “Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 3–18 ; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 1–16 |
5
|
15. |
T. A. Senchonok, “Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 271–281 |
3
|
16. |
T. A. Senchonok, V. A. Baransky, “Classification of elements of small height in lattices of complete multipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011), 159–173 |
2
|
|
Organisations |
|
|
|
|