|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a solution to a terminal control problem with two small parameters”, Mat. Sb., 216:8 (2025), 82–111 ; Sb. Math., 216:8 (2025), 1092–1120 |
| 2. |
A. R. Danilin, I. V. Pershin, “Asymptotics of a solution to an optimal boundary control problem with performance index defined on the boundary”, Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025), 94–107 |
|
2024 |
| 3. |
A. R. Danilin, “Asymptotics of the solution of a bisingular optimal distributed control problem in a convex domain with a small parameter multiplying a highest derivative”, Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024), 732–744 ; Comput. Math. Math. Phys., 64:5 (2024), 941–953 |
|
2023 |
| 4. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables”, Izv. IMI UdGU, 61 (2023), 42–56 |
1
|
| 5. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023), 41–53 ; Proc. Steklov Inst. Math., 323, suppl. 1 (2023), S85–S97 |
| 6. |
A. R. Danilin, A. A. Shaburov, “Asymptotics of a Solution to an Optimal Control Problem with Integral Convex Performance Index, Cheap Control, and Initial Data Perturbations”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 67–76 ; Proc. Steklov Inst. Math., 321, suppl. 1 (2023), S69–S77 |
| 7. |
A. R. Danilin, “Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives”, Ufimsk. Mat. Zh., 15:2 (2023), 42–54 ; Ufa Math. J., 15:2 (2023), 42–54 |
1
|
|
2022 |
| 8. |
A. R. Danilin, A. A. Shaburov, “Asymptotic expansion of the solution of a singularly perturbed optimal control problem with elliptical control constraints”, Avtomat. i Telemekh., 2022, no. 1, 3–21 ; Autom. Remote Control, 83:1 (2022), 1–16 |
| 9. |
A. R. Danilin, A. A. Shaburov, “Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control”, Sib. Zh. Ind. Mat., 25:3 (2022), 5–13 ; J. Appl. Industr. Math., 16:3 (2022), 387–393 |
2
|
| 10. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 58–73 |
5
|
| 11. |
A. R. Danilin, “Asymptotic expansion for the solution of an optimal boundary control problem in a doubly connected domain with different control intensity on boundary segments”, Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 217–231 ; Comput. Math. Math. Phys., 62:2 (2022), 218–231 |
1
|
|
2021 |
| 12. |
A. R. Danilin, “Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021), 108–119 |
| 13. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 48–61 |
3
|
|
2020 |
| 14. |
A. R. Danilin, A. A. Shaburov, “Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables”, Izv. IMI UdGU, 55 (2020), 33–41 |
1
|
| 15. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 132–146 ; Proc. Steklov Inst. Math., 313, suppl. 1 (2021), S40–S53 |
1
|
| 16. |
A. R. Danilin, “Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020), 102–111 |
2
|
|
2019 |
| 17. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 88–101 ; Proc. Steklov Inst. Math., 309, suppl. 1 (2020), S10–S23 |
2
|
| 18. |
A. R. Danilin, A. A. Shaburov, “Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables”, Ufimsk. Mat. Zh., 11:2 (2019), 83–98 ; Ufa Math. J., 11:2 (2019), 82–96 |
3
|
|
2018 |
| 19. |
A. R. Danilin, “Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 51–61 |
| 20. |
A. R. Danilin, O. O. Kovrizhnykh, “On a singularly perturbed time-optimal control problem with two small parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 76–92 ; Proc. Steklov Inst. Math., 307, suppl. 1 (2019), S34–S50 |
| 21. |
A. R. Danilin, “Asymptotics of the solution of a bisingular optimal boundary control problem in a bounded domain”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1804–1814 ; Comput. Math. Math. Phys., 58:11 (2018), 1737–1747 |
2
|
|
2017 |
| 22. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a solution to a singularly perturbed time-optimal control problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 67–76 ; Proc. Steklov Inst. Math., 303, suppl. 1 (2018), S60–S69 |
1
|
| 23. |
A. R. Danilin, S. V. Zakharov, O. O. Kovrizhnykh, E. F. Lelikova, I. V. Pershin, O. Yu. Khachay, “The Yekaterinburg heritage of Arlen Mikhailovich Il'in”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 42–66 |
2
|
| 24. |
A. R. Danilin, “Asymptotics of the solution to the singular problem of optimal distributed control in a convex domain”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:1 (2017), 128–142 ; Proc. Steklov Inst. Math., 300, suppl. 1 (2018), S72–S87 |
1
|
|
2016 |
| 25. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the optimal time in a time-optimal control problem with a small parameter”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 61–70 ; Proc. Steklov Inst. Math., 297, suppl. 1 (2017), S62–S71 |
1
|
| 26. |
A. R. Danilin, “A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 52–60 ; Proc. Steklov Inst. Math., 296, suppl. 1 (2017), S119–S127 |
|
2015 |
| 27. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the optimal time in a time-optimal control problem with a small parameter”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 71–80 |
|
2014 |
| 28. |
A. R. Danilin, “Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014), 116–127 ; Proc. Steklov Inst. Math., 292, suppl. 1 (2016), S55–S66 |
6
|
| 29. |
A. R. Danilin, “Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014), 76–85 ; Proc. Steklov Inst. Math., 291, suppl. 1 (2015), S66–S76 |
3
|
| 30. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the optimal time in a time-optimal problem with two small parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 92–99 ; Proc. Steklov Inst. Math., 288, suppl. 1 (2015), S46–S53 |
3
|
|
2013 |
| 31. |
A. R. Danilin, N. S. Korobitsyna, “Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013), 104–112 ; Proc. Steklov Inst. Math., 285, suppl. 1 (2014), S58–S67 |
3
|
|
2012 |
| 32. |
A. R. Danilin, A. P. Zorin, “Asymptotics of a solution to an optimal boundary control problem in a bounded domain”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 75–82 |
2
|
| 33. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotic representation of a solution to a singular perturbation linear time-optimal problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012), 67–79 ; Proc. Steklov Inst. Math., 281, suppl. 1 (2013), S22–S35 |
5
|
| 34. |
A. R. Danilin, “Optimal boundary control in a small concave domain”, Ufimsk. Mat. Zh., 4:2 (2012), 87–100 |
10
|
|
2011 |
| 35. |
A. R. Danilin, O. O. Kovrizhnykh, “The dependence of the time-optimal control problem for a linear system of the small parameters”, Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14, 46–60 |
2
|
|
2010 |
| 36. |
A. E. El'bert, A. R. Danilin, “Optimized autophasing of solitons”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 288–296 |
1
|
| 37. |
A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the optimal time in a singular perturbation linear problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010), 63–75 ; Proc. Steklov Inst. Math., 271, suppl. 1 (2010), S53–S65 |
6
|
|
2009 |
| 38. |
A. R. Danilin, A. P. Zorin, “Asymptotics of a solution to an optimal boundary control problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009), 95–107 ; Proc. Steklov Inst. Math., 269, suppl. 1 (2010), S81–S94 |
13
|
|
2007 |
| 39. |
A. R. Danilin, Yu. V. Parysheva, “The asymptotics of the optimal value of the performance functional in a linear optimal control problem in the regular case”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 55–65 ; Proc. Steklov Inst. Math., 259, suppl. 2 (2007), S83–S94 |
5
|
|
2006 |
| 40. |
A. R. Danilin, “Asymptotics of the optimal value of the performance functional for a rapidly stabilizing indirect control in the regular case”, Differ. Uravn., 42:11 (2006), 1473–1480 ; Differ. Equ., 42:11 (2006), 1545–1552 |
7
|
| 41. |
A. R. Danilin, “Asymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular case”, Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006), 2166–2177 ; Comput. Math. Math. Phys., 46:12 (2006), 2068–2079 |
21
|
|
2003 |
| 42. |
A. R. Danilin, “Asymptotic behaviour of solutions of a singular elliptic system
in a rectangle”, Mat. Sb., 194:1 (2003), 31–60 ; Sb. Math., 194:1 (2003), 31–61 |
6
|
| 43. |
A. R. Danilin, “Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003), 71–78 ; Proc. Steklov Inst. Math., 2003no. , suppl. 1, S45–S53 |
1
|
|
2000 |
| 44. |
A. R. Danilin, “Approximation of a singularly perturbed elliptic problem of optimal control”, Mat. Sb., 191:10 (2000), 3–12 ; Sb. Math., 191:10 (2000), 1421–1431 |
19
|
|
1998 |
| 45. |
A. R. Danilin, A. M. Il'in, “On the structure of the solution of a perturbed optimal-time control problem”, Fundam. Prikl. Mat., 4:3 (1998), 905–926 |
18
|
| 46. |
A. R. Danilin, “Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity”, Mat. Sb., 189:11 (1998), 27–60 ; Sb. Math., 189:11 (1998), 1611–1642 |
32
|
|
1996 |
| 47. |
A. R. Danilin, A. M. Il'in, “Asymptotic behavior of the solution of the time-optimality problem
for a linear system under perturbation of initial data”, Dokl. Akad. Nauk, 350:2 (1996), 155–157 |
7
|
| 48. |
A. R. Danilin, “Regularization of nonlinear control problems under perturbations of constraints”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 8, 34–38 ; Russian Math. (Iz. VUZ), 40:8 (1996), 32–36 |
|
1994 |
| 49. |
A. R. Danilin, “Regularization of the problem of the control of a dynamical system in a Hilbert space under conditions of uncertainty”, Differ. Uravn., 30:1 (1994), 172–174 ; Differ. Equ., 30:1 (1994), 160–163 |
|
1992 |
| 50. |
A. R. Danilin, “Regularization of a control problem with constraints on the state”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 24–28 ; Russian Math. (Iz. VUZ), 36:2 (1992), 24–28 |
1
|
|
1985 |
| 51. |
A. R. Danilin, “Order-optimal estimates for finite-dimensional approximations of solutions of ill-posed problems”, Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985), 1123–1130 ; U.S.S.R. Comput. Math. Math. Phys., 25:4 (1985), 102–106 |
4
|
|
1984 |
| 52. |
A. R. Danilin, V. P. Tanana, “Necessary and sufficient conditions for convergence of approximations of linear ill-posed problems in a Hilbert space”, Zh. Vychisl. Mat. Mat. Fiz., 24:5 (1984), 633–639 ; U.S.S.R. Comput. Math. Math. Phys., 24:3 (1984), 5–9 |
|
1982 |
| 53. |
V. P. Tanana, A. R. Danilin, “Necessary and sufficient conditions for convergence of finite-dimensional approximations of regularized solutions”, Dokl. Akad. Nauk SSSR, 264:5 (1982), 1094–1096 |
| 54. |
A. R. Danilin, “Necessary and sufficient conditions for the convergence of finite-dimensional approximations of the residual method”, Zh. Vychisl. Mat. Mat. Fiz., 22:4 (1982), 994–997 ; U.S.S.R. Comput. Math. Math. Phys., 22:4 (1982), 231–235 |
|
1980 |
| 55. |
A. R. Danilin, “Conditions for convergence of finite-dimensional approximations of the residual method”, Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11, 38–40 ; Soviet Math. (Iz. VUZ), 24:11 (1980), 41–44 |
2
|
|
1976 |
| 56. |
V. P. Tanana, A. R. Danilin, “The optimality of regularizing algorithms in the solution of ill-posed problems”, Differ. Uravn., 12:7 (1976), 1323–1326 |
8
|
|
|
|
2025 |
| 57. |
D. I. Borisov, A. R. Danilin, V. Yu. Novokshenov, “Tribute to Arlen Mikhailovich Il'in”, Mat. Sb., 216:8 (2025), 3–4 ; Sb. Math., 216:8 (2025), 1019–1020 |
|
2002 |
| 58. |
V. M. Babich, R. R. Gadyl'shin, A. R. Danilin, S. Yu. Dobrokhotov, V. A. Il'in, L. A. Kalyakin, E. F. Mishchenko, V. Yu. Novokshenov, Yu. S. Osipov, M. D. Ramazanov, N. Kh. Rozov, V. A. Sadovnichii, “Arlen Mikhailovich Il'in (A tribute in honor of his 70th birthday)”, Differ. Uravn., 38:8 (2002), 1011–1016 ; Differ. Equ., 38:8 (2002), 1075–1080 |
|
| Organisations |
|
| |
|
|