|
|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
| 1. |
F. S. Stonyakin, O. S. Savchuk, I. V. Baran, M. S. Alkousa, A. A. Titov, “Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods”, Computer Research and Modeling, 15:2 (2023), 413–432 |
| 2. |
F. S. Stonyakin, S. S. Ablaev, I. V. Baran, M. S. Alkousa, “Subgradient methods for weakly convex and relatively weakly convex problems with a sharp minimum”, Computer Research and Modeling, 15:2 (2023), 393–412 |
3
|
| 3. |
S. S. Ablaev, I. V. Baran, “On mirror descent methods for some types of composite optimization problems with functional constraints”, Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 3, 7–18 |
|
2022 |
| 4. |
S. S. Ablaev, D. V. Makarenko, F. S. Stonyakin, M. S. Alkousa, I. V. Baran, “Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum”, Computer Research and Modeling, 14:2 (2022), 473–495 |
1
|
|
2021 |
| 5. |
F. S. Stonyakin, S. S. Ablaev, I. V. Baran, “Adaptive gradient-type methods for optimization problems with relative error and sharp minimum”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021), 175–188 |
1
|
|
2020 |
| 6. |
F. S. Stonyakin, I. V. Baran, “On some algorithms for constrained optimization problems with relative accuracy with respect to the objective functional”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 198–210 |
|
2015 |
| 7. |
I. V. Orlov, I. V. Baran, “Introduction to sublinear analysis – 2: symmetric case”, CMFD, 57 (2015), 108–161 ; Journal of Mathematical Sciences, 225:2 (2017), 265–321 |
1
|
|
| Organisations |
|
|