Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Maslov, Dmitry Alexandrovich

Candidate of technical sciences (2019)
E-mail: ;

https://www.mathnet.ru/eng/person114683
List of publications on Google Scholar
https://elibrary.ru/author_items.asp?authorid=822799
ISTINA https://istina.msu.ru/workers/62842123
https://orcid.org/0009-0001-6427-2270
https://www.webofscience.com/wos/author/record/AAE-2357-2020
https://www.scopus.com/authid/detail.url?authorId=56581573900

Publications in Math-Net.Ru Citations
2025
1. D. A. Maslov, “Method of holomorphic regularization of the Cauchy problem for one class of nonlinear Tikhonov systems”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 244 (2025),  79–85  mathnet
2. A. A. Maslov, D. A. Maslov, “Nonlinear dynamics for cylindrical resonator of wave solid-state gyroscope with different number of electrostatic control sensors”, Izvestiya VUZ. Applied Nonlinear Dynamics, 33:4 (2025),  466–484  mathnet
3. D. A. Maslov, “The Holomorphic Regularization Method of the Tikhonov System of Differential Equations for Mathematical Modeling of Wave Solid-State Gyroscope Dynamics”, Rus. J. Nonlin. Dyn., 21:2 (2025),  233–248  mathnet 1
2024
4. V. I. Kachalov, D. A. Maslov, “Small parameter method in the theory of Burgers-type equations”, Zh. Vychisl. Mat. Mat. Fiz., 64:12 (2024),  2371–2377  mathnet  elib; Comput. Math. Math. Phys., 64:12 (2024), 2886–2892 1
5. D. A. Maslov, “About one method for numerical solution of the Cauchy problem for singularly perturbed differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  804–818  mathnet  elib; Comput. Math. Math. Phys., 64:5 (2024), 1029–1043 1
2023
6. D. A. Maslov, “Nonlinear Dynamics of a Wave Solid-State Gyroscope Taking into Account the Electrical Resistance of an Oscillation Control Circuit”, Rus. J. Nonlin. Dyn., 19:3 (2023),  409–435  mathnet 2
7. V. I. Kachalov, D. A. Maslov, “Analyticity and pseudo-analyticity in the small parameter method”, Zh. Vychisl. Mat. Mat. Fiz., 63:11 (2023),  1806–1814  mathnet  elib; Comput. Math. Math. Phys., 63:11 (2023), 1996–2004 3
2019
8. Yu. A. Konyaev, D. A. Maslov, “An Asymptotic Method for Reducing Systems of Differential Equations with Almost-Periodic Matrices”, Mat. Zametki, 105:1 (2019),  9–17  mathnet  mathscinet  elib; Math. Notes, 105:1 (2019), 8–15  isi  scopus
2018
9. D. A. Maslov, I. V. Merkuryev, “Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account”, Nelin. Dinam., 14:3 (2018),  377–386  mathnet  elib  scopus 4
2017
10. Yu. A. Konyaev, D. A. Maslov, “Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10,  62–69  mathnet; Russian Math. (Iz. VUZ), 61:10 (2017), 54–60  isi  scopus
11. Yu. A. Konyaev, D. A. Maslov, “Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices”, Mat. Zametki, 101:2 (2017),  226–231  mathnet  mathscinet  elib; Math. Notes, 101:2 (2017), 260–264  isi  scopus 1
12. D. A. Maslov, I. V. Merkuryev, “The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces”, Nelin. Dinam., 13:3 (2017),  413–421  mathnet  elib 4
13. D. A. Maslov, I. V. Merkuryev, “Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode”, Nelin. Dinam., 13:2 (2017),  227–241  mathnet  elib 7

Organisations