|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large aluminium agglomerate particles in air. III. Particle fragmentation”, Fizika Goreniya i Vzryva, 61:5 (2025), 111–119 |
| 2. |
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large particles-agglomerates of aluminum in the air. II. Movement and stages of particle combustion”, Fizika Goreniya i Vzryva, 61:4 (2025), 95–112 |
| 3. |
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large aluminium agglomerate particles in air. I. Research method, burning time and characteristics of final oxide particles”, Fizika Goreniya i Vzryva, 61:1 (2025), 44–59 ; Combustion, Explosion and Shock Waves, 61:1 (2025), 45–61 |
| 4. |
V. A. Poryazov, O. G. Glotov, A. Yu. Krainov, D. A. Krainov, “Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. II. Numerical modeling results”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94, 175–187 |
|
2024 |
| 5. |
N. S. Belousova, O. G. Glotov, A. V. Gus'kov, “Study of the additive modifiers effect on the combustion characteristics of composite propellants with aluminium”, Chelyab. Fiz.-Mat. Zh., 9:2 (2024), 195–202 |
| 6. |
V. A. Poryazov, O. G. Glotov, A. Yu. Krainov, D. A. Krainov, I. V. Sorokin, G. S. Surodin, “Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. I. Experiment: methodology, processing, results”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92, 125–143 |
|
2023 |
| 7. |
O. G. Glotov, I. V. Sorokin, A. A. Cheremisin, “Pocket model of aluminum agglomeration with a tetrahedral cell for composite propellants”, Fizika Goreniya i Vzryva, 59:6 (2023), 91–97 ; Combustion, Explosion and Shock Waves, 59:6 (2023), 752–758 |
2
|
| 8. |
V. A. Arkhipov, S. A. Basalaev, S. S. Bondarchuk, O. G. Glotov, V. A. Poryazov, Ya. A. Dubkova, “Experimental study of the unsteady burning rate of high-energy materials under depressurization”, Fizika Goreniya i Vzryva, 59:2 (2023), 133–140 ; Combustion, Explosion and Shock Waves, 59:2 (2023), 244–251 |
| 9. |
N. S. Belousova, O. G. Glotov, I. V. Sorokin, “Combustion of composite propellants with titanium”, Prikl. Mekh. Tekh. Fiz., 64:1 (2023), 22–26 ; J. Appl. Mech. Tech. Phys., 64:1 (2023), 18–22 |
3
|
|
2022 |
| 10. |
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. II. Characteristics of condensed combustion products”, Fizika Goreniya i Vzryva, 58:6 (2022), 51–65 ; Combustion, Explosion and Shock Waves, 58:6 (2022), 674–687 |
3
|
|
2021 |
| 11. |
O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes”, Fizika Goreniya i Vzryva, 57:6 (2021), 20–31 ; Combustion, Explosion and Shock Waves, 57:6 (2021), 651–662 |
11
|
|
2019 |
| 12. |
O. G. Glotov, G. S. Surodin, “Combustion of aluminum and boron agglomerates free falling in air. II. Experimental results”, Fizika Goreniya i Vzryva, 55:3 (2019), 110–117 ; Combustion, Explosion and Shock Waves, 55:3 (2019), 345–352 |
10
|
| 13. |
O. G. Glotov, G. S. Surodin, “Combustion of aluminum and boron agglomerates free falling in air. I. Experimental approach”, Fizika Goreniya i Vzryva, 55:3 (2019), 100–109 ; Combustion, Explosion and Shock Waves, 55:3 (2019), 335–344 |
3
|
| 14. |
O. G. Glotov, G. S. Surodin, A. M. Baklanov, “Combustion of spherical titanium aglomerates in air. III. Movement of agglomerates and the effect of airflow velocity on nanosized combustion products and burning time”, Fizika Goreniya i Vzryva, 55:1 (2019), 49–62 ; Combustion, Explosion and Shock Waves, 55:1 (2019), 43–55 |
7
|
| 15. |
O. G. Glotov, “Ignition and combustion of titanium particles: experimental methods and results”, UFN, 189:2 (2019), 135–171 ; Phys. Usp., 62:2 (2019), 131–165 |
29
|
|
2016 |
| 16. |
A. G. Korotkikh, V. A. Arkhipov, O. G. Glotov, I. V. Sorokin, “Effect of metal ultrafine powders on the HEM combustion characteristics”, CPM, 18:2 (2016), 179–186 |
|
2015 |
| 17. |
A. G. Korotkikh, V. A. Arkhipov, O. G. Glotov, A. B. Kiskin, V. E. Zarko, “Effect of iron powder on ignition and combustion characteristics of composite solid propellants”, CPM, 17:1 (2015), 12–22 |
1
|
|
2014 |
| 18. |
V. N. Simonenko, P. I. Kalmykov, A. B. Kiskin, O. G. Glotov, V. E. Zarko, K. A. Sidorov, B. V. Pevchenko, R. G. Nikitin, “Combustion of model compositions based on furazanotetrazine dioxide and dinitrodiazapentane. I. Binary systems”, Fizika Goreniya i Vzryva, 50:3 (2014), 68–77 ; Combustion, Explosion and Shock Waves, 50:3 (2014), 306–314 |
8
|
|
2013 |
| 19. |
O. G. Glotov, “Combustion of spherical agglomerates of titanium in air. II. Results of experiments”, Fizika Goreniya i Vzryva, 49:3 (2013), 58–71 ; Combustion, Explosion and Shock Waves, 49:3 (2013), 307–319 |
17
|
| 20. |
O. G. Glotov, “Combustion of spherical agglomerates of titanium in air. I. Experimental approach”, Fizika Goreniya i Vzryva, 49:3 (2013), 50–57 ; Combustion, Explosion and Shock Waves, 49:3 (2013), 299–306 |
11
|
|
2010 |
| 21. |
O. G. Glotov, “Three-dimensional modeling of the structure and combustion of heterogeneous condensed systems”, Fizika Goreniya i Vzryva, 46:6 (2010), 130–134 ; Combustion, Explosion and Shock Waves, 46:6 (2010), 729–732 |
2
|
|
2008 |
| 22. |
O. G. Glotov, V. A. Zhukov, “The evolution of 100-$\mu$m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant.
II. Results”, Fizika Goreniya i Vzryva, 44:6 (2008), 61–71 ; Combustion, Explosion and Shock Waves, 44:6 (2008), 671–680 |
19
|
| 23. |
O. G. Glotov, V. A. Zhukov, “Evolution of 100-$\mu$m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant.
I. Experimental approach”, Fizika Goreniya i Vzryva, 44:6 (2008), 52–60 ; Combustion, Explosion and Shock Waves, 44:6 (2008), 662–670 |
8
|
|
2007 |
| 24. |
O. G. Glotov, D. A. Yagodnikov, V. S. Vorob’ev, V. E. Zarko, V. N. Simonenko, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration”, Fizika Goreniya i Vzryva, 43:3 (2007), 83–97 ; Combustion, Explosion and Shock Waves, 43:3 (2007), 320–333 |
72
|
|
2006 |
| 25. |
V. V. Karasev, A. A. Onischuk, S. A. Khromova, O. G. Glotov, V. E. Zarko, E. A. Pilyugina, Ch.-J. Tsai, “Formation of metal oxide nanoparticles in combustion of titanium and aluminum droplets”, Fizika Goreniya i Vzryva, 42:6 (2006), 33–47 ; Combustion, Explosion and Shock Waves, 42:6 (2006), 649–662 |
16
|
| 26. |
D. A. Yagodnikov, E. A. Andreev, V. S. Vorob’ev, O. G. Glotov, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. I. Theoretical study of the ignition and combustion of aluminum with fluorine-containing coatings”, Fizika Goreniya i Vzryva, 42:5 (2006), 46–55 ; Combustion, Explosion and Shock Waves, 42:5 (2006), 534–542 |
49
|
| 27. |
O. G. Glotov, “Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency”, Fizika Goreniya i Vzryva, 42:4 (2006), 78–92 ; Combustion, Explosion and Shock Waves, 42:4 (2006), 436–449 |
47
|
|
2003 |
| 28. |
O. G. Glotov, V. E. Zarko, V. V. Karasev, T. D. Fedotova, A. D. Rychkov, “Macrokinetics of combustion of monodisperse agglomerates in the flame of a model solid propellant”, Fizika Goreniya i Vzryva, 39:5 (2003), 74–85 ; Combustion, Explosion and Shock Waves, 39:5 (2003), 552–562 |
14
|
|
2002 |
| 29. |
O. G. Glotov, “Condensed combustion products of aluminized propellants. III. Effect of an inert gaseous combustion environment”, Fizika Goreniya i Vzryva, 38:1 (2002), 105–113 ; Combustion, Explosion and Shock Waves, 38:1 (2002), 92–100 |
22
|
|
2001 |
| 30. |
V. V. Karasev, A. A. Onischuk, O. G. Glotov, A. M. Baklanov, V. E. Zarko, V. N. Panfilov, “Charges and fractal properties of nanoparticles – combustion products of aluminum agglomerates”, Fizika Goreniya i Vzryva, 37:6 (2001), 133–135 ; Combustion, Explosion and Shock Waves, 37:6 (2001), 734–736 |
14
|
|
2000 |
| 31. |
O. G. Glotov, “Condensed combustion products of aluminized propellants. II. Evolution of particles with distance from the burning surface”, Fizika Goreniya i Vzryva, 36:4 (2000), 66–78 ; Combustion, Explosion and Shock Waves, 36:4 (2000), 476–487 |
42
|
| 32. |
O. G. Glotov, V. E. Zarko, V. V. Karasev, “Problems and prospects of investigating the formation and evolution of agglomerates by the sampling method”, Fizika Goreniya i Vzryva, 36:1 (2000), 161–172 ; Combustion, Explosion and Shock Waves, 36:1 (2000), 146–156 |
10
|
|
1995 |
| 33. |
O. G. Glotov, V. Ya. Zyryanov, “Condensed combustion products of aluminized propellants. 1. A technique for investigating the evolution of disperse-phase particles”, Fizika Goreniya i Vzryva, 31:1 (1995), 74–80 ; Combustion, Explosion and Shock Waves, 31:1 (1995), 72–78 |
23
|
|
1988 |
| 34. |
V. Ya. Zyryanov, V. M. Bolvanenko, O. G. Glotov, Yu. M. Gurenko, “Turbulent model for the combustion of a solid fuel composite”, Fizika Goreniya i Vzryva, 24:6 (1988), 17–26 ; Combustion, Explosion and Shock Waves, 24:6 (1988), 652–660 |
1
|
|
1984 |
| 35. |
O. G. Glotov, V. E. Zarko, “Numerical modeling of ignition in a condensed substance with independent endo- and exothermal reactions”, Fizika Goreniya i Vzryva, 20:4 (1984), 3–10 ; Combustion, Explosion and Shock Waves, 20:4 (1984), 359–365 |
3
|
|
| Organisations |
|
|