|
|
|
Publications in Math-Net.Ru |
Citations |
|
1991 |
| 1. |
A. I. Yablonskii, A. F. Korzyuk, S. A. Myzgaeva, “Moving essentially singular points of solutions of the Euler system”, Differ. Uravn., 27:5 (1991), 906–909 |
|
1989 |
| 2. |
A. I. Yablonskii, A. F. Korzyuk, “Classes of third-order systems with quadratic right-hand sides without moving critical points”, Differ. Uravn., 25:4 (1989), 635–640 ; Differ. Equ., 25:4 (1989), 433–436 |
|
1988 |
| 3. |
A. I. Yablonskii, A. F. Korzyuk, “Nonlinear systems with single-valued movable singular points that are generated by fourth-order linear systems”, Differ. Uravn., 24:12 (1988), 2119–2124 ; Differ. Equ., 24:12 (1988), 1437–1442 |
|
1987 |
| 4. |
A. I. Yablonskii, A. F. Korzyuk, “A method for constructing systems of nonlinear differential equations of arbitrary order with moving polar singular points”, Differ. Uravn., 23:12 (1987), 2074–2079 |
| 5. |
A. F. Korzyuk, “On the problem of third-order nonlinear systems with single-valued moving singularities”, Differ. Uravn., 23:5 (1987), 791–798 |
|
1986 |
| 6. |
A. I. Yablonskii, A. F. Korzyuk, S. A. Myzgaeva, “Representation of solutions in a neighborhood of moving branch points of a problem on the motion of a rigid body around a fixed point under the Appelrot conditions”, Differ. Uravn., 22:11 (1986), 1928–1933 |
| 7. |
A. I. Yablonskii, A. F. Korzyuk, S. A. Myzgaeva, “Representation of solutions in a neighborhood of moving branch points of a problem on the motion of a rigid body around a fixed point in a special case”, Differ. Uravn., 22:5 (1986), 910–913 |
|
| Organisations |
|
|