|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
L. N. Galoyan, M. G. Grigoryan, “Functions Almost Universal in the Sense of Signs with Respect to the Trigonometric System and the Walsh System”, Mat. Zametki, 115:6 (2024), 935–939 ; Math. Notes, 115:6 (2024), 1030–1034 |
2. |
M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Mat. Sb., 215:6 (2024), 3–28 |
|
2023 |
3. |
M. G. Grigoryan, S. V. Konyagin, “On Fourier series in the multiple trigonometric system”, Uspekhi Mat. Nauk, 78:4(472) (2023), 201–202 ; Russian Math. Surveys, 78:4 (2023), 782–784 |
2
|
|
2022 |
4. |
M. G. Grigoryan, “On the Convergence of Negative-Order Cesàro Means of Fourier and Fourier–Walsh Series”, Mat. Zametki, 112:3 (2022), 474–477 ; Math. Notes, 112:3 (2022), 476–479 |
5. |
M. G. Grigoryan, “On universal Fourier series in the Walsh system”, Sibirsk. Mat. Zh., 63:5 (2022), 1035–1051 ; Siberian Math. J., 63:5 (2022), 868–882 |
3
|
6. |
M. G. Grigoryan, “On Almost Universal Double Fourier Series”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 91–102 ; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S129–S139 |
3
|
|
2021 |
7. |
M. G. Grigoryan, “On the existence and structure of universal functions”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 30–33 ; Dokl. Math., 103:1 (2021), 23–25 |
5
|
8. |
M. G. Grigoryan, L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. RAN. Ser. Mat., 85:2 (2021), 73–94 ; Izv. Math., 85:2 (2021), 241–261 |
8
|
9. |
M. G. Grigoryan, “On universal Fourier–Walsh series”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021), 45–57 |
10. |
M. G. Grigoryan, “On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$”, Sibirsk. Mat. Zh., 62:4 (2021), 747–757 ; Siberian Math. J., 62:4 (2021), 607–615 |
|
2020 |
11. |
M. G. Grigoryan, “Universal Fourier Series”, Mat. Zametki, 108:2 (2020), 296–299 ; Math. Notes, 108:2 (2020), 282–285 |
8
|
12. |
M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Mat. Sb., 211:6 (2020), 107–131 ; Sb. Math., 211:6 (2020), 850–874 |
13
|
13. |
G. G. Gevorkyan, M. G. Grigoryan, “Absolute convergence of the double fourier–franklin series”, Sibirsk. Mat. Zh., 61:3 (2020), 513–527 ; Siberian Math. J., 61:3 (2020), 403–416 |
2
|
14. |
M. G. Grigoryan, A. L. Ghazaryan, G. G. Kazaryan, “On the uniform convergence of double Furier–Walsh series”, Proceedings of the YSU, Physical and Mathematical Sciences, 54:1 (2020), 20–28 |
|
2018 |
15. |
M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Mat. Sb., 209:1 (2018), 37–57 ; Sb. Math., 209:1 (2018), 35–55 |
15
|
16. |
M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Sibirsk. Mat. Zh., 59:5 (2018), 1057–1065 ; Siberian Math. J., 59:5 (2018), 835–842 |
2
|
17. |
M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, Zap. Nauchn. Sem. POMI, 467 (2018), 34–54 ; J. Math. Sci. (N. Y.), 243:6 (2019), 844–858 |
1
|
|
2016 |
18. |
M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. RAN. Ser. Mat., 80:6 (2016), 65–91 ; Izv. Math., 80:6 (2016), 1057–1083 |
13
|
19. |
M. G. Grigoryan, A. A. Sargsyan, “On existence of a universal function for $L^p[0,1]$ with $p\in(0,1)$”, Sibirsk. Mat. Zh., 57:5 (2016), 1021–1035 ; Siberian Math. J., 57:5 (2016), 796–808 |
2
|
|
2015 |
20. |
L. N. Galoyan, M. G. Grigoryan, A. Kh. Kobelyan, “Convergence of Fourier series in classical systems”, Mat. Sb., 206:7 (2015), 55–94 ; Sb. Math., 206:7 (2015), 941–979 |
12
|
|
2013 |
21. |
M. G. Grigoryan, S. A. Sargsyan, “Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 2, 30–39 ; Russian Math. (Iz. VUZ), 57:2 (2013), 25–33 |
1
|
22. |
M. G. Grigoryan, V. G. Krotov, “Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System”, Mat. Zametki, 93:2 (2013), 172–178 ; Math. Notes, 93:2 (2013), 217–223 |
11
|
|
2012 |
23. |
M. G. Grigoryan, “Modifications of functions, Fourier coefficients and nonlinear approximation”, Mat. Sb., 203:3 (2012), 49–78 ; Sb. Math., 203:3 (2012), 351–379 |
20
|
|
2008 |
24. |
M. G. Grigorian, “On the strengthened $L^1$-greedy property of the Walsh system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 26–37 ; Russian Math. (Iz. VUZ), 52:5 (2008), 20–31 |
2
|
25. |
M. G. Grigoryan, A. A. Sargsyan, “Non-linear approximation of continuous functions
by the Faber-Schauder system”, Mat. Sb., 199:5 (2008), 3–26 ; Sb. Math., 199:5 (2008), 629–653 |
17
|
|
2003 |
26. |
M. G. Grigoryan, “On the $L^p_\mu$-strong property of orthonormal systems”, Mat. Sb., 194:10 (2003), 77–106 ; Sb. Math., 194:10 (2003), 1503–1532 |
17
|
|
2002 |
27. |
M. G. Grigoryan, “On an orthonormal system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4, 24–28 ; Russian Math. (Iz. VUZ), 46:4 (2002), 22–26 |
1
|
|
2001 |
28. |
M. G. Grigoryan, A. S. Sarkisyan, “On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces”, Proceedings of the YSU, Physical and Mathematical Sciences, 2001, no. 1, 136–138 |
|
2000 |
29. |
M. G. Grigoryan, “On universality systems in $L^p$, $1\leq p<2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 5, 19–22 ; Russian Math. (Iz. VUZ), 44:5 (2000), 17–20 |
1
|
|
1993 |
30. |
M. G. Grigoryan, “On some properties of orthogonal systems”, Izv. RAN. Ser. Mat., 57:5 (1993), 75–105 ; Russian Acad. Sci. Izv. Math., 43:2 (1994), 261–289 |
5
|
|
1992 |
31. |
M. G. Grigoryan, “On certain properties of orthogonal systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10, 80–82 ; Russian Math. (Iz. VUZ), 36:10 (1992), 78–80 |
32. |
M. G. Grigoryan, “Convergence of Fourier–Laplace series in the $L^p$ metric”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 17–23 ; Russian Math. (Iz. VUZ), 36:2 (1992), 17–23 |
1
|
33. |
M. G. Grigoryan, “The almost everywhere convergence of fourier series according to complete orthonormal systems”, Mat. Zametki, 51:5 (1992), 35–43 ; Math. Notes, 51:5 (1992), 447–453 |
2
|
|
1990 |
34. |
M. G. Grigoryan, “Convergence of Laplace and Fourier series”, Dokl. Akad. Nauk SSSR, 315:2 (1990), 265–266 ; Dokl. Math., 42:3 (1991), 736–737 |
1
|
35. |
M. G. Grigoryan, “Convergence of Fourier-Walsh series in the $L^1$ metric and almost everywhere”, Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11, 9–18 ; Soviet Math. (Iz. VUZ), 34:11 (1990), 9–20 |
4
|
36. |
M. G. Grigoryan, “On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere”, Mat. Sb., 181:8 (1990), 1011–1030 ; Math. USSR-Sb., 70:2 (1991), 445–466 |
17
|
|
1988 |
37. |
M. G. Grigoryan, “The representation of measurable functions by usual and multiple series of Legendre polynomials”, Proceedings of the YSU, Physical and Mathematical Sciences, 1988, no. 1, 143–146 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|