|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
G. L. Sharipov, K. Ph. Koledina, V. O. Podryga, S. V. Polyakov, N. I. Tarasov, “Modeling of hydrocarbon fluid flow in a catalytic reactor”, Keldysh Institute preprints, 2024, 066, 16 pp. |
2. |
S. V. Polyakov, N. I. Tarasov, T. A. Kudryashova, “Modeling of nonlinear wave processes in a microwave generator with magnetic insulation”, Zh. Vychisl. Mat. Mat. Fiz., 64:12 (2024), 2401–2410 ; Comput. Math. Math. Phys., 64:12 (2024), 2916–2924 |
|
2023 |
3. |
E. E. Lobanova, N. I. Tarasov, “Application of a digital platform for modeling gas dynamics problems”, Keldysh Institute preprints, 2023, 077, 20 pp. |
4. |
T. A. Kudryashova, E. A. Galstyan, S. V. Polyakov, N. I. Tarasov, “Computer modeling of electron emission processes in strong electromagnetic fields”, Keldysh Institute preprints, 2023, 072, 16 pp. |
5. |
T. A. Kudryashova, S. V. Polyakov, N. I. Tarasov, “Numerical analysis of water purification processes in closed loop systems”, Mat. Model., 35:3 (2023), 59–78 ; Math. Models Comput. Simul., 15:5 (2023), 817–831 |
6. |
N. I. Tarasov, V. O. Podryga, S. V. Polyakov, “Web laboratory for supercomputer multiscale modeling of spraying problems”, Num. Meth. Prog., 24:4 (2023), 463–484 |
7. |
T. A. Kudryashova, S. V. Polyakov, N. I. Tarasov, “Simulation of emission processes in strong electromagnetic fields”, Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023), 1354–1366 ; Comput. Math. Math. Phys., 63:8 (2023), 1486–1498 |
2
|
|
2022 |
8. |
N. I. Tarasov, T. A. Kudryashova, S. V. Polyakov, “Modeling formation and removal of limescale in water treatment systems”, Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022), 79–85 ; Dokl. Math., 106:1 (2022), 279–285 |
2
|
9. |
T. A. Kudryashova, Yu. N. Karamzin, S. V. Polyakov, N. I. Tarasov, “Mathematical modeling of physical processes in electromagnetic water filters and heat exchangers”, Keldysh Institute preprints, 2022, 084, 24 pp. |
10. |
N. I. Tarasov, “Architecture and implementation of a digital platform for numerical experiments on supercomputers”, Keldysh Institute preprints, 2022, 050, 30 pp. |
1
|
|
2021 |
11. |
S. V. Polyakov, T. A. Kudryashova, N. I. Tarasov, “Application of the multiscale approach to simulation of air sorbent filtration”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 92–96 ; Dokl. Math., 104:2 (2021), 297–300 |
1
|
|
2020 |
12. |
S. V. Polyakov, T. A. Kudryashova, N. I. Tarasov, “Double potential method for modeling the internal flow of a viscous incompressible liquid”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 76–79 ; Dokl. Math., 102:2 (2020), 418–421 |
2
|
13. |
S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, N. I. Tarasov, “Multiscale supercomputer modeling of gas purification processes by the adsorption method”, Num. Meth. Prog., 21:1 (2020), 64–77 |
|
2019 |
14. |
N. I. Tarasov, S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, “Incompressible viscous flow simulation using the quasi-hydrodynamic equations system”, Mat. Model., 31:12 (2019), 33–43 ; Math. Models Comput. Simul., 12:4 (2020), 553–560 |
6
|
15. |
S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, N. I. Tarasov, “Multiscale simulation of gas cleaning processes”, Mat. Model., 31:9 (2019), 54–78 ; Math. Models Comput. Simul., 12:3 (2020), 302–315 |
|
2018 |
16. |
N. I. Tarasov, Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “Incompressible viscous flow simulation using the double potential method”, Keldysh Institute preprints, 2018, 247, 20 pp. |
|
Organisations |
|
|
|
|