A.S. Ustiuzhaninova, “Uniform Attractors for the Modified Kelvin-Voigt Model”, Differential Equations, 57:9 (2021), 1165-1176
M. Turbin, A. Ustiuzhaninova, “Pullback attractors for weak solution to modified Kelvin-Voigt model”, Evolution Equations And Control Theory, 11:6 (2022), 2055-2072
M. Turbin, A. Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin-Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12:2 (2024), Article number 266
M. V. Turbin, A. S. Ustiuzhaninova, “Attractors of modified Kelvin — Voigt model with memory along fluid trajectories”, Ufa Math. J., 17:1 (2025), 74–101
2.
A. S. Ustiuzhaninova, “Uniform attractors for the Bingham model”, Russian Math. (Iz. VUZ), 68:8 (2024), 59–69
3.
M. Turbin, A. Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin-Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12:2 (2024), 266 , 26 pp.
M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of an Initial–Boundary Value Problem for the Modified Kelvin–Voigt Model with Memory along Fluid Motion Trajectories”, Differential Equations, 60 (2024), 180-203
5.
M. V. Turbin, A. S. Ustiuzhaninova, “Uniform attractors for the Kelvin—Voigt model taking into account memory along fluid motion trajectories”, J. Appl. Industr. Math., 18:4 (2024), 906–918
6.
M. Turbin, A. Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin-Voigt fluid motion model”, Boletín de la Sociedad Matemática Mexicana, 29 (2023), 54 , 37 pp.
V. G. Zvyagin, A. S. Ustiuzhaninova, “Pullback Attractors of the Bingham Model”, Differential Equations, 59 (2023), 377-382
8.
M. V. Turbin, A. S. Ustiuzhaninova, “Convergence of attractors for an approximation to attractors of a modified Kelvin–Voigt model”, Comput. Math. Math. Phys., 62:2 (2022), 325–335
9.
A. Ustiuzhaninova, M. Turbin, “Feedback control problem for modified Kelvin-Voigt model”, Journal of Dynamical and Control Systems, 28:3 (2022), 465–480
M. Turbin, A. Ustiuzhaninova, “Pullback attractors for weak solution to modified Kelvin-Voigt model”, Evolution Equations And Control Theory, 11:6 (2022), 2055–2072
A. S. Ustiuzhaninova, “Pullback-attractors for the modified Kelvin-Voigt model”, Russian Math. (Iz. VUZ), 65:5 (2021), 77–82
12.
A. S. Ustiuzhaninova, M. V. Turbin, “Trajectory and global attractors for a modified Kelvin—Voigt model”, J. Appl. Industr. Math., 15:1 (2021), 158–168
13.
A. S. Ustiuzhaninova, “Uniform Attractors for the Modified Kelvin-Voigt Model”, Differential Equations, 57:9 (2021), 1165–1176
14.
V. Zvyagin, A. Zvyagin, A. Ustiuzhaninova, “Optimal feedback control problem for the fractional Voigt-$\alpha$ model”, Mathematics, 8:7 (2020), 1197 , 27 pp.
M. V. Turbin, A. S. Ustiuzhaninova, “The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions”, Russian Math. (Iz. VUZ), 63:8 (2019), 54–69
16.
P. I. Plotnikov, M. V. Turbin, A. S. Ustiuzhaninova, “Existence Theorem for a Weak Solution of the Optimal Feedback Control Problem for the Modified Kelvin-Voigt Model of Weakly Concentrated Aqueous Polymer Solutions”, Doklady Mathematics, 100:2 (2019), 433–435