Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Napoles, Juan Eduardo

Professor
Doctor of physico-mathematical sciences (1994)
Speciality: 01.01.00 (Mathematics)
Birth date: 27.10.1961
Keywords: Ordinary differential equations Fractional calculus Generalized operators Integral inequalities.

Subject:

Mathematics

Biography

I born in Cuba, since 1998 I live in Argentina.

   
Main publications:
  1. Paulo M. Guzman, Luciano M. Lugo, Juan E. Nápoles Valdés and Miguel Vivas-Cortez, “On a New Generalized Integral Operator and Certain Operating Properties”, Axioms, 9:2 (2020), 69  crossref
  2. JUAN E. NAPOLES VALDES and CEMIL TUNC, “ON THE BOUNDEDNESS AND OSCILLATION OF NON-CONFORMABLE LIENARD EQUATION”, Journal of Fractional Calculus and Applications, 11:2 (2020), 92-101 http://math-frac.oreg/Journals/JFCA/
  3. Paulo M. Guzmán, Péter Kórus and Juan E. Nápoles Valdés, “Generalized Integral Inequalities of Chebyshev Type”, Fractal and fractional, 4:10 (2020)  crossref
  4. S. BERMUDO, P. KORUS and J. E. NAPOLES VALDES, “ON q-HERMITE–HADAMARD INEQUALITIES FOR GENERAL CONVEX FUNCTIONS”, Acta Mathematica Hungarica, 2020  crossref
  5. Sergio Bermudo, JuanE. Nápoles and Juan Rada, “Extremal trees for the Randi ´c index with given domination number”, Applied Mathematics and Computation, 375 (2020), 125122  crossref

https://www.mathnet.ru/eng/person157670
List of publications on Google Scholar
https://orcid.org/0000-0003-2470-1090

Publications in Math-Net.Ru Citations
2025
1. J. M. Jonnalagadda, J. E. Nápoles Valdés, “Positive solutions of nabla fractional Sturm–Liouville problems”, Bulletin of Irkutsk State University. Series Mathematics, 51 (2025),  50–65  mathnet
2. B. Bayraktar, L. Gómez, J. E. Nápoles, “Inequalities of the $3/8$-Simpson type for differentiable functions via generalized fractional operators”, Probl. Anal. Issues Anal., 14:2 (2025),  25–52  mathnet
2024
3. J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “New integral inequalities in the class of functions $(h,m)$-convex”, Izv. Saratov Univ. Math. Mech. Inform., 24:2 (2024),  173–183  mathnet 1
4. J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets”, Probl. Anal. Issues Anal., 13(31):2 (2024),  106–127  mathnet 1
5. J. E. Nápoles, B. Bayraktar, S. I. Butt, “New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications”, Sib. Èlektron. Mat. Izv., 21:2 (2024),  684–701  mathnet
2023
6. J. E. Nápoles, M. N. Quevedo Cubillos, B. Bayraktar, “Integral inequalities of Simpson type via weighted integrals”, Probl. Anal. Issues Anal., 12(30):2 (2023),  68–86  mathnet 5
2022
7. B. Bayraktar, J. E. Nápoles Valdés, “New generalized integral inequalities via $(h,m)$-convex modified functions”, Izv. IMI UdGU, 60 (2022),  3–15  mathnet  mathscinet 6
8. B. Bayraktar, J. E. Nápoles, F. Rabossi, “On generalizations of integral inequalities”, Probl. Anal. Issues Anal., 11(29):2 (2022),  3–23  mathnet  mathscinet 5
2021
9. B. Bayraktar, S. I. Butt, Sh. Shaokat, J. E. Nápoles Valdés, “New Hadamard-type inequalities via $(s,m_{1},m_{2})$-convex functions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:4 (2021),  597–612  mathnet  isi 4

Organisations