Ordinary differential equations Fractional calculus Generalized operators Integral inequalities.
Subject:
Mathematics
Biography
I born in Cuba, since 1998 I live in Argentina.
Main publications:
Paulo M. Guzman, Luciano M. Lugo, Juan E. Nápoles Valdés and Miguel Vivas-Cortez, “On a New Generalized Integral Operator and Certain
Operating Properties”, Axioms, 9:2 (2020), 69
JUAN E. NAPOLES VALDES and CEMIL TUNC, “ON THE BOUNDEDNESS AND OSCILLATION OF
NON-CONFORMABLE LIENARD EQUATION”, Journal of Fractional Calculus and Applications, 11:2 (2020), 92-101http://math-frac.oreg/Journals/JFCA/
Paulo M. Guzmán, Péter Kórus and Juan E. Nápoles Valdés, “Generalized Integral Inequalities of Chebyshev Type”, Fractal and fractional, 4:10 (2020)
S. BERMUDO, P. KORUS and J. E. NAPOLES VALDES, “ON q-HERMITE–HADAMARD INEQUALITIES
FOR GENERAL CONVEX FUNCTIONS”, Acta Mathematica Hungarica, 2020
Sergio Bermudo, JuanE. Nápoles and Juan Rada, “Extremal trees for the Randi ´c index with given domination number”, Applied Mathematics and Computation, 375 (2020), 125122
J. M. Jonnalagadda, J. E. Nápoles Valdés, “Positive solutions of nabla fractional Sturm–Liouville problems”, Bulletin of Irkutsk State University. Series Mathematics, 51 (2025), 50–65
2.
B. Bayraktar, L. Gómez, J. E. Nápoles, “Inequalities of the $3/8$-Simpson type for differentiable functions via generalized fractional operators”, Probl. Anal. Issues Anal., 14:2 (2025), 25–52
2024
3.
J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “New integral inequalities in the class of functions $(h,m)$-convex”, Izv. Saratov Univ. Math. Mech. Inform., 24:2 (2024), 173–183
J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets”, Probl. Anal. Issues Anal., 13(31):2 (2024), 106–127
J. E. Nápoles, B. Bayraktar, S. I. Butt, “New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications”, Sib. Èlektron. Mat. Izv., 21:2 (2024), 684–701
2023
6.
J. E. Nápoles, M. N. Quevedo Cubillos, B. Bayraktar, “Integral inequalities of Simpson type via weighted integrals”, Probl. Anal. Issues Anal., 12(30):2 (2023), 68–86
B. Bayraktar, S. I. Butt, Sh. Shaokat, J. E. Nápoles Valdés, “New Hadamard-type inequalities via $(s,m_{1},m_{2})$-convex functions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:4 (2021), 597–612