|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
S. Ghosh, P. Saha, B. S. Choudhury, “Iterated function system with fuzzy Banach orbital condition for fractal generation”, Math. Notes, 117:1 (2025), 42–50 |
1
|
| 2. |
Parbati Saha, Pratap Mondal, Binayak S. Choudhury, “Stability of general quadratic Euler–Lagrange functional equations in modular spaces: a fixed point approach”, Ural Math. J., 11:1 (2025), 114–123 |
|
2024 |
| 3. |
Ranajit Jyoti, Binayak S. Choudhury, Nikhilesh Metiya, Santu Dutta, Sankar P. Mondal, “$\phi$-fixed point results in $b$-metric spaces with $wt$-distance”, J. Sib. Fed. Univ. Math. Phys., 17:6 (2024), 698–709 |
| 4. |
B. S. Choudhury, P. Chakraborty, “A fixed point problem for a hybrid contraction and Ulam-Hyers-Rassias stability result with respect to $w$-distance”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:4 (2024), 744–754 |
|
2023 |
| 5. |
S. Ghosh, P. Saha, S. Roy, B. S. Choudhury, “Strong coupled fixed points and applications to fractal generations in fuzzy metric spaces”, Probl. Anal. Issues Anal., 12(30):3 (2023), 50–68 |
1
|
|
2022 |
| 6. |
B. S. Choudhury, N. Metiya, S. Kundu, “A multivalued fixed point result with associated data dependece and stability study”, Probl. Anal. Issues Anal., 11(29):1 (2022), 45–57 |
2
|
|
2021 |
| 7. |
Priyam Chakraborty, Binayak S. Choudhury, “Locally Weak Version of the Contraction Mapping Principle”, Math. Notes, 109:6 (2021), 859–866 |
4
|
| 8. |
P. Saha, Pratap Mondal, B. S. Choudhury, “Stability Property of Functional Equations inModular Spaces: A Fixed-Point Approach”, Math. Notes, 109:2 (2021), 262–269 |
|
2013 |
| 9. |
B. S. Choudhury, H. Sh. Mondal, “A note on almost causality and reflectingness of space–time”, TMF, 176:3 (2013), 366–371 ; Theoret. and Math. Phys., 176:3 (2013), 1140–1144 |
1
|
|
| Organisations |
|
|