Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Gorbunov, Vladimir Konstantinovich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 13

Number of views:
This page:2018
Abstract pages:4563
Full texts:2210
References:314
Professor
Doctor of physico-mathematical sciences (1991)
Speciality: 01.01.07 (Computing mathematics)
Birth date: 27.04.1941
E-mail:
Website: https://www.ulsu.ru/com/chairs/emmit/staff/gorbunov
Keywords: Optimization; Regularization; Numerical methods; Oplimal control; Mathematical economics; Concumption theory. Extremum problems, variational methods, differential equations, integral equations, degenet=rate problems, normal splines, parameterization method, ill-posed problems, cjnsumers' demand, economic equilibrium

Subject:

Optimization methods, Ill-posed problems, Numerical methods for extremum problems, ordinary differential and integral equations, Mathematical economics. Parameterization method for optimal control problems, which is contained in a finite parameterization of a seeking control function and calculation of first and second derivatives on the parameters of the problem"s functionals by using of conjugate variables, is created. The normal spline-collocation method for solution of integral and differential equations, particularly degenerated ones, is created. Regularization methods for nonlinear equations, inequalities and extremum problems, which are based on an explicit parameterization of input data and on using of multi-valued mappings, are created. The most effective method of extended minimization could be assumed as an expansion on nonlinear problems the last Tikhonov's regularization concept (1980–1985), according to which for obtaining a stable approximation of a solution of an ill-posed problem one have to find an element of minimal completeness in the join of solution set of the family of problems which are equivalent to the initial one with respect to input data accuracy. For inverse problem of the consumer demand theory solution methods in the class of differentiable utility functions are created. Numerical Analysis, Mathematical Economics

Biography

Graduated from Moscow Physical-Technical Institute in 1969 on specialty "Systems of automation control". In 1970–1976 worked for the Tashkent State University. In 1974 Ph.D. thesis "Optimization problems of processes with controllable discontinuities of phase trajectories" was defended in the MPhTI. During 1976–1990 worked for the Mathematics Institute of the Academy of Sciences of Kirghiz SSR. In this period I continued investigations on optimal control problems and turned to problems of numeric mathematics and modeling of demographic processes of a population that is heterogeneous on reproduction behavior. Since 1990 I work for the Ulyanovsk State University. My D.Sci. thesis "Extremum problems for measurements data processing" was defended in Computing Center of the Siberian Branch of the USSR ASc. in 1987. My education topics: Optimization methods, Ill-posed problems, Mathematical economics.

Member of the Academy of Nonlinear Sciences (President ac. V. M. Matrosov), Chief of the Ulyanovsk Branch of the Middle Volga Mathematical Society. I was awarded the sign "Honourable Employee of the Higher Education of Russia Federation".

   
Main publications:
  • Regularization of degenerated equations and inequalities under explicit data parameterization // Journal of Inv. and Ill-Posed Problems, 2001, v. 9, no. 6. \begin{thebibliography}{9}
  • \Bibitem{1} \by Gorbunov V.K. \paper The parametrization method for optimal control problems \paperinfo A method of numerical solution of optimal control problems is proposed, which consists in a finite parameterization of the required optimal control. The calculation of derivatives (the first and second order) of the problem functional and of constrains with respect to control parameters is fulfilled with the use of conjugated systems (first and second order). \jour Computational Mathemathics and Mathemathical Physics \yr 1979 \vol 19 \issue 2 \pages 18-30
  • \Bibitem{2} \by Gorbunov V.K. \paper The method of normal spline-collocation \paperinfo A method of numerical solution of integro-differential equations (including initial and boundary value problems of ODEs and integral equations of the first kind) is proposed. The method consists in transfer from the equation to a collocation system with arbitrary nodes, and a statement of the problem of minimizing some Sobolev-Hilbert norm of solutions of the collocation system. The arisen point and integral (for the integral component of the equation) functionals are transformed to canonical form, that is to the scalar product. The method is applicable (converges) for equations with arbitrary degenerate principal part. \jour Computational Mathemathics and Mathemathical Physics \yr 1989 \vol 29 \issue 2 \pages 145-154
  • \Bibitem{3} \by Gorbunov V.K., Sviridov V.Yu/ \paper A method of normal splines for linear DAEs on the number semi-axes \paperinfo The method of normal spline-collocation, applicable to a wide class of optimal control problems, of ordinary linear singular differential and integral equations, is specified for the boundary value problems for DAEs of second order on the number semi-axes. \jour Applied Numerical Mathematics \yr 2009 \vol 59 \issue 3-4 \pages 655-670
  • \Bibitem{4} \by Gorbunov V.K., I.V. Lutoshkin, Yu.V. Martynenko \paper A parametrization method for numerical solution of singular differential equations \paperinfo The paper extends the numerical parametrization method, originally created for optimal control problems, for classical calculus of variational problems that arise in connection wuth singular implicite and DAEs in frame or their regularization. \jour Applied Numerical Mathematics \yr 2009 \vol 59 \issue 3-4 \pages 639-655
  • \end{thebibliography}

https://www.mathnet.ru/eng/person17526
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/218183
https://orcid.org/0000-0001-5276-0501

Publications in Math-Net.Ru Citations
2024
1. V. K. Gorbunov, A. G. Lvov, “The problem of verifying the market demand theory”, Sib. Zh. Ind. Mat., 27:2 (2024),  43–65  mathnet; J. Appl. Industr. Math., 18:2 (2024), 253–270
2019
2. V. K. Gorbunov, A. G. Lvov, “Inverse problem of the market demand theory and analytical indices of demand”, Zhurnal SVMO, 21:1 (2019),  89–110  mathnet 4
2016
3. V. K. Gorbunov, A. G. Lvov, “Mathematical model of estimation of production funds of small business”, Zhurnal SVMO, 18:4 (2016),  107–118  mathnet  elib
2010
4. V. K. Gorbunov, A. G. Ledovskikh, “The construction of a preference field on a trade statistics”, Zhurnal SVMO, 12:4 (2010),  10–20  mathnet
2008
5. V. K. Gorbunov, V. Sviridov, “The normal spline method for numerical inversion of Laplace transform in real form”, Trudy SVMO, 10:1 (2008),  46–54  mathnet
2005
6. V. K. Gorbunov, A. Gorobetz, V. Sviridov, “The method of normal splines for linear implicit differential equations of second order”, Lobachevskii J. Math., 20 (2005),  59–75  mathnet  mathscinet  zmath
2003
7. V. K. Gorbunov, V. V. Petrishchev, “Improvement of the normal spline collocation method for linear differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 43:8 (2003),  1150–1159  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:8 (2003), 1099–1108 13
1991
8. V. K. Gorbunov, “Regularization of extremal problems”, Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991),  235–248  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 31:2 (1991), 42–52  isi
1989
9. V. K. Gorbunov, “The method of normal spline collocation”, Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  212–224  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 29:1 (1989), 145–154 14
1985
10. V. K. Gorbunov, “Reduction of linear integral equations with uniform error in the right-hand side”, Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  210–223  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 25:1 (1985), 136–144 3
1981
11. V. K. Gorbunov, “Dispersion of a system of sets and numerical problems”, Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981),  286–297  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 21:2 (1981), 27–39
1979
12. V. K. Gorbunov, “A method for the parametrization of optimal control problems”, Zh. Vychisl. Mat. Mat. Fiz., 19:2 (1979),  292–303  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 19:2 (1979), 18–30 11
1978
13. V. K. Gorbunov, “The reduction of optimal control problems to finite-dimensional problems”, Zh. Vychisl. Mat. Mat. Fiz., 18:5 (1978),  1083–1095  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 18:5 (1978), 8–21 6

2021
14. O. V. Anashkin, P. M. Akhmet'ev, D. V. Balandin, M. K. Barinova, I. V. Boykov, A. N. Bezdenezhnyh, V. N. Belykh, P. A. Vel'misov, I. Yu. Vlasenko, O. E. Galkin, S. Yu. Galkina, V. K. Gorbunov, S. D. Glyzin, S. V. Gonchenko, A. S. Gorodetski, E. V. Gubina, E. Ya. Gurevich, A. A. Davydov, L. S. Efremova, R. V. Zhalnin, A. Yu. Zhirov, E. V. Zhuzhoma, N. I. Zhukova, S. Kh. Zinina, Yu. S. Ilyashenko, N. V. Isaenkova, A. O. Kazakov, A. V. Klimenko, S. A. Komech, Yu. A. Kordyukov, V. E. Kruglov, E. V. Kruglov, E. B. Kuznetsov, S. K. Lando, Yu. A. Levchenko, L. M. Lerman, S. I. Maksimenko, M. I. Malkin, D. S. Malyshev, V. K. Mamaev, T. Ph. Mamedova, V. S. Medvedev, T. V. Medvedev, D. I. Mints, T. M. Mitryakova, A. D. Morozov, A. I. Morozov, E. V. Nozdrinova, E. N. Pelinovsky, Ya. B. Pesin, A. S. Pikovsky, S. Yu. Pilyugin, G. M. Polotovsky, O. V. Pochinka, I. D. Remizov, P. E. Ryabov, A. S. Skripchenko, A. V. Slunyaev, S. V. Sokolov, L. A. Sukharev, E. A. Talanova, V. A. Timorin, S. B. Tikhomirov, V. F. Tishkin, D. V. Treschev, D. V. Turaev, N. G. Chebochko, E. E. Chilina, P. A. Shamanaev, D. D. Shubin, E. I. Yakovlev, “To the 75th anniversary of Vyacheslav Zigmundovich Grines”, Zhurnal SVMO, 23:4 (2021),  472–476  mathnet
2020
15. I. V. Boykov, P. A. Vel'misov, È. R. Gizzatova, V. K. Gorbunov, V. Z. Grines, I. M. Gubaydullin, Yu. N. Deryugin, E. V. Desyaev, D. K. Egorova, A. P. Zhabko, R. V. Zhalnin, A. S. Ismagilova, V. N. Krizsky, E. B. Kuznetsov, T. Ph. Mamedova, N. D. Morozkin, S. M. Muryumin, S. A. Mustafina, O. V. Pochinka, I. P. Ryazantseva, K. B. Sabitov, L. A. Sukharev, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, “In memory of Spivak Semen Izrailevich”, Zhurnal SVMO, 22:4 (2020),  463–466  mathnet  elib
16. A. I. Dreglea, V. K. Gorbunov, A. V. Keller, V. V. Pukhnachev, R. Ju. Leontiev, O. A. Romanova, D. N. Sidorov, V. S. Sizikov, G. A. Sviridyuk, A. A. Zamyshlyaeva, S. A. Zagrebina, “Nikolai Aleksandrovich Sidorov (on 80th birthday)”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  119–121  mathnet
2018
17. N. A. Sidorov, O. A. Romanova, M. V. Falaleev, D. N. Sidorov, V. K. Gorbunov, A. I. Dreglea, “In the memory of professor Boris Vladimirovich Loginov”, Bulletin of Irkutsk State University. Series Mathematics, 23 (2018),  96–99  mathnet
18. A. S. Andreev, A. V. Ankilov, T. E. Badokina, D. I. Boyarkin, I. V. Boykov, D. K. Egorova, V. Z. Grines, S. A. Grishina, V. K. Gorbunov, Yu. N. Deryugin, E. V. Desyaev, R. V. Zhalnin, I. V. Konopleva, L. R. Kim-Tyan, V. N. Krizsky, S. I. Martynov, T. Ph. Mamedova, S. M. Muryumin, E. E. Peskova, Yu. V. Pokladova, O. V. Pochinka, V. P. Radchenko, I. P. Ryazantseva, S. I. Spivak, L. A. Sukharev, A. O. Syromyasov, V. F. Tishkin, I. I. Chuchaev, P. A. Shamanaev, O. S. Yazovtseva, N. G. Yarushkina, A.-V. Ion, “Velmisov Petr Aleksandrovich (on his seventieth birthday)”, Zhurnal SVMO, 20:3 (2018),  338–340  mathnet
19. A. S. Andreev, A. N. Andronov, T. E. Badokina, D. I. Boyarkin, I. V. Boykov, P. A. Vel'misov, V. Z. Grines, S. A. Grishina, V. K. Gorbunov, Yu. N. Deryugin, A. P. Zhabko, R. V. Zhalnin, I. V. Konopleva, L. R. Kim-Tyan, V. N. Krizsky, T. Ph. Mamedova, S. M. Muryumin, O. V. Pochinka, I. P. Ryazantseva, N. V. Savinov, A. R. Sibireva, L. A. Sukharev, V. F. Tishkin, E. V. Foliadova, I. I. Chuchaev, P. A. Shamanaev, N. G. Yarushkina, “In memory of Boris Vladimirovich Loginov”, Zhurnal SVMO, 20:1 (2018),  103–106  mathnet  elib
2017
20. E. N. Artem'eva, I. V. Boykov, M. A. Borisov, D. I. Boyarkin, P. A. Vel'misov, V. K. Gorbunov, T. A. Gorshunova, V. Z. Grines, Yu. N. Deryugin, E. V. Desyaev, D. K. Egorova, R. V. Zhalnin, O. E. Kaledin, V. N. Krizsky, E. B. Kuznetsov, B. V. Loginov, T. Ph. Mamedova, S. I. Martynov, N. D. Morozkin, S. M. Muryumin, I. P. Nikitin, O. V. Pochinka, D. V. Pashutkin, A. Yu. Pavlov, E. E. Peskova, I. P. Ryazantseva, V. I. Safonkin, G. A. Smolkin, S. I. Spivak, L. A. Sukharev, A. O. Syromyasov, M. T. Terekhin, V. F. Tishkin, S. A. Firsova, E. A. Chernoivanova, I. I. Chuchaev, P. A. Shamanaev, O. S. Yazovtseva, Z. Ya. Yakupov, “On the 80th anniversary of professor E.V. Voskresensky's birthday”, Zhurnal SVMO, 19:4 (2017),  95–99  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024