Qualitative Theory of Ordinary Differential Equations and Stability Theory
Main publications:
Bondarev A.A., “On the Existence of a Globally Lyapunov Unstable Differential System All of Whose Solutions Tend to Zero as Time Tends to Infinity”, Differential Equations, 58:8 (2022), 999–1007
Bondarev A.A., “Example of a Differential System with Complete Perron and Upper-Limit Instability but Massive Partial Stability”, Differential Equations, 58:2 (2022), 147–153
Bondarev A.A., Sergeev I.N., “Examples of Differential Systems with Contrasting Combinations of Lyapunov, Perron, and Upper-Limit Properties”, Doklady Mathematics, 106:2 (2022), 322–325
Bondarev A.A., “An Example of Complete but not Global Perron Instability”, Moscow University Mathematics Bulletin, 76:2 (2021), 78-82
Bondarev A.A., “An Example of Contasting Combination to Stability and Instability Properties in Even-Dimensional Spaces”, Memoirs on Differential Equations and Mathematical Physics, 87 (2022), 25–36
A. A. Bondarev, “Two Contrasting Examples of Multidimensional Differential Systems with Lyapunov Extreme Instability”, Mat. Zametki, 115:1 (2024), 24–42; Math. Notes, 115:1 (2024), 21–36
A.A. Bondarev, “Coincidence of linear approximation classes providing asymptotic and particular instabilities”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 5, 16–21; Moscow University Mathematics Bulletin, 79:5 (2024), 223–229
2022
4.
A.A. Bondarev, I. N. Sergeev, “Examples of differential systems with contrasting combinations of Lyapunov, Perron, and upper-limit properties”, Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 25–29; Dokl. Math., 106:2 (2022), 322–325
A. A. Bondarev, “An example of complete but not global Perron instability”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 2, 43–47; Moscow University Mathematics Bulletin, 76:2 (2021), 78–82