Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Shchepetilov, Alexey Valerievich

Candidate of physico-mathematical sciences (1994)
Speciality: 01.01.03 (Mathematical physics)
Birth date: 09.06.1968
E-mail: ;
Website: https://afrodita.phys.msu.su/~shchepet
Keywords: dynamical systems; integrability of Hamiltonian dynamical systems; Hamiltonian reduction; quantum mechanics; invariant differential operators on Riemannian spaces; action of Lie groups; quasi-exactly solvable systems; differential equations.

Subject:

In the period from 1990 to 1994 the investigations of some mathematical models of heat processing of a steel were carried out. The solvability and the uniquiness of the boundary value problem for the system of integro-differential equations describing the austenite-perlite transformation under cooling were proved under different restrictions. The inverse problem of determination functional coefficients for this transformation on the base of temperature measurements were solved. In the period from 1995 to 2001 the investigations of the classical and quantum two-body problem with a central interaction on the complete two point homogineous Riemannian spaces (particulary on the spaces of a constant sectional curvature) were carried out. For the spaces of a constant sectional curvature the Hamiltonian reduction of the classical problem was carried out and the classification of the reduced dynamical systems with two degrees of freedom was given. For some values of the momentum map the conditions for the interaction were found, which provide the absence of particles collisions on the infinite period of time. In the quantum case for an arbitrary complete two point homogeneous Riemannian space the expression of Hamiltonian through the radial differential operator and generators of the symmetry group was found. This expression gives the possibilities to construct the selfadjoint extension of the Hamiltonian and to find some infinite eigenvalue series using the representation theory of groups. There was found the description of the reduced cotangent bundle of a homogeneous space of arbitrary Lie group in terms of orbits of the coadjoint action of that group. Noncomutative algebras of invariant differential operators on homogeneous spaces $U_{\mathbb{H}}(n+1)/(U_{\mathbb{H}}(n-1)U_{\mathbb{H}}(1)),\;U(n+1)/(U(n-1)U(1))$ and their noncompact analogues, connected with the quantum two body problem on spaces $P^n(\mathbb{H}),\; P^n(\mathbb{C}),\; H^n(\mathbb{H})$ and $H^n(\mathbb{C})$ were investigated.

Biography

Graduated from Faculty of Physics of M. V. Lomonosov Moscow State University (MSU) in 1991 (department of mathematics theory). Ph. D. thesis was defended in 1994. A list of my works contains 15 titles.

   
Main publications:
  • Shchepetilov A. V. Reduction of the two-body problem with central interaction on simply connected spaces of constant sectional curvature // J. Phys. A, 1998, 31, 6279–6291.

https://www.mathnet.ru/eng/person17812
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/293703

Publications in Math-Net.Ru Citations
2025
1. I. È. Stepanova, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov, “On variational settings of the inverse coefficient problems in magnetic hydrodynamics”, Zh. Vychisl. Mat. Mat. Fiz., 65:7 (2025),  1265–1276  mathnet  elib; Comput. Math. Math. Phys., 65:7 (2025), 1646–1658
2. I. È. Stepanova, I. I. Kolotov, A. G. Yagola, A. V. Shchepetilov, A. N. Levashov, “On the uniqueness of discrete gravity and magnetic potentials”, Zh. Vychisl. Mat. Mat. Fiz., 65:3 (2025),  376–389  mathnet  elib; Comput. Math. Math. Phys., 65:3 (2025), 603–617
2024
3. I. È. Stepanova, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov, “On the uniqueness of the finite-difference analogues of the fundamental solution of the heat equation and the wave equation in discrete potential theory”, Zh. Vychisl. Mat. Mat. Fiz., 64:12 (2024),  2378–2389  mathnet  elib; Comput. Math. Math. Phys., 64:12 (2024), 2893–2904
4. I. È. Stepanova, D. V. Lukyanenko, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov, “Erratum to: On the construction of an optimal network of observation points when solving inverse linear problems of gravimetry and magnetometry”, Comput. Math. Math. Phys., 64:11 (2024), 2736  mathnet
5. I. È. Stepanova, D. V. Lukyanenko, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, I. A. Kerimov, A. N. Levashov, “On the simultaneous determination of the distribution density of sources equivalent in the external field and the spectrum of the useful signal”, Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  867–880  mathnet  elib; Comput. Math. Math. Phys., 64:5 (2024), 1089–1102
6. I. È. Stepanova, D. V. Lukyanenko, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov, “On the construction of an optimal network of observation points when solving inverse linear problems of gravimetry and magnetometry”, Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024),  403–414  mathnet  elib; Comput. Math. Math. Phys., 64:3 (2024), 281–391
2023
7. I. I. Kolotov, D. V. Lukyanenko, I. È. Stepanova, A. V. Shchepetilov, A. G. Yagola, “On the uniqueness of solution to systems of linear algebraic equations to which the inverse problems of gravimetry and magnetometry are reduced: A regional variant”, Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1446–1457  mathnet  elib; Comput. Math. Math. Phys., 63:9 (2023), 1588–1599 14
2000
8. A. V. Shchepetilov, “Reduction of the two-body problem with central interaction on simply connected surfaces of a constant curvature”, Fundam. Prikl. Mat., 6:1 (2000),  249–263  mathnet  mathscinet  zmath 2
9. I. É. Stepanova, A. V. Shchepetilov, “Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian”, TMF, 124:3 (2000),  481–489  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 124:3 (2000), 1265–1272  isi 6
10. A. V. Shchepetilov, “Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system”, TMF, 124:2 (2000),  249–264  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 124:2 (2000), 1068–1081  isi 9
1999
11. A. V. Shchepetilov, “Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces”, TMF, 118:2 (1999),  248–263  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 118:2 (1999), 197–208  isi 5
1996
12. A. V. Shchepetilov, “Some quantum mechanical problems in Lobachevsky space”, TMF, 109:3 (1996),  395–405  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 109:3 (1996), 1556–1564  isi 3
1993
13. A. V. Shchepetilov, “Application of Sard's theorem to the proof of the uniqueness of the solution of a boundary value problem for a semilinear parabolic equation with a nonlocal source”, Differ. Uravn., 29:8 (1993),  1442–1446  mathnet  mathscinet; Differ. Equ., 29:8 (1993), 1250–1253
1991
14. V. B. Glasko, A. V. Shchepetilov, “On an inverse problem of technology and the uniqueness of its solution”, Zh. Vychisl. Mat. Mat. Fiz., 31:12 (1991),  1826–1834  mathnet  mathscinet; U.S.S.R. Comput. Math. Math. Phys., 31:12 (1991), 47–53  isi

Organisations