|
|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
| 1. |
P. V. Bulat, K. N. Volkov, I. I. Esakov, P. B. Lavrov, A. A. Ravaev, “Electrodynamic model of combustion chamber using subcritical streamer discharge to ignite fuel mixture”, Zhurnal Tekhnicheskoi Fiziki, 92:5 (2022), 676–684 |
|
2020 |
| 2. |
P. V. Bulat, L. P. Grachev, I. I. Esakov, A. A. Ravaev, L. G. Severinov, “Erratum to: Combustion Dynamics of a Propane–Air Gas Mixture When it is Ignited by a Streamer Microwave Discharge”, Tech. Phys., 65:1 (2020), 161 |
|
2019 |
| 3. |
P. V. Bulat, L. P. Grachev, I. I. Esakov, A. A. Ravaev, L. G. Severinov, “Combustion dynamics of a propane–air gas mixture when it is ignited by a streamer microwave discharge”, Zhurnal Tekhnicheskoi Fiziki, 89:10 (2019), 1529–1534 ; Tech. Phys., 64:10 (2019), 1446–1451 |
1
|
| 4. |
P. V. Bulat, L. P. Grachev, I. I. Esakov, A. A. Ravaev, L. G. Severinov, “Microwave air breakdown initiated by the electromagnetic vibrator placed on a dielectric surface”, Zhurnal Tekhnicheskoi Fiziki, 89:7 (2019), 1016–1020 ; Tech. Phys., 64:7 (2019), 957–961 |
3
|
| 5. |
P. V. Bulat, L. P. Grachev, I. I. Esakov, A. A. Ravaev, “Threshold field that separates domains of subcritical and deeply subcritical microwave discharges ignited on a dielectric surface”, Zhurnal Tekhnicheskoi Fiziki, 89:1 (2019), 64–68 ; Tech. Phys., 64:1 (2019), 56–60 |
|
2018 |
| 6. |
K. V. Aleksandrov, N. I. Busleev, L. P. Grachev, I. I. Esakov, A. A. Ravaev, “Gas electric discharge with a developed streamer structure in a quasi-optical microwave beam”, Zhurnal Tekhnicheskoi Fiziki, 88:10 (2018), 1515–1519 ; Tech. Phys., 63:10 (2018), 1468–1472 |
1
|
| 7. |
L. P. Grachev, I. I. Esakov, A. A. Ravaev, L. G. Severinov, “Initiation of gas electrical breakdown in the field of a microwave traveling over the metal surface”, Zhurnal Tekhnicheskoi Fiziki, 88:7 (2018), 1000–1003 ; Tech. Phys., 63:7 (2018), 970–973 |
| 8. |
K. V. Aleksandrov, N. I. Busleev, L. P. Grachev, I. I. Esakov, A. A. Ravaev, “Multipoint ignition of a gas mixture by a microwave subcritical discharge with an extended streamer structure”, Zhurnal Tekhnicheskoi Fiziki, 88:2 (2018), 174–179 ; Tech. Phys., 63:2 (2018), 167–171 |
2
|
|
2017 |
| 9. |
N. I. Busleev, V. L. Bychkov, L. P. Grachev, I. I. Esakov, A. A. Ravaev, “Detachment of electrons from atmospheric oxygen molecules in a high electric field”, Zhurnal Tekhnicheskoi Fiziki, 87:9 (2017), 1322–1326 ; Tech. Phys., 62:9 (2017), 1332–1336 |
1
|
| 10. |
K. V. Aleksandrov, L. P. Grachev, I. I. Esakov, A. A. Ravaev, L. G. Severinov, “Effective area of energy interactions between the plasma of a deeply subcritical microwave discharge and its initiating electromagnetic field”, Zhurnal Tekhnicheskoi Fiziki, 87:5 (2017), 696–699 ; Tech. Phys., 62:5 (2017), 716–719 |
|
2016 |
| 11. |
K. V. Aleksandrov, L. P. Grachev, I. I. Esakov, A. A. Ravaev, L. G. Severinov, A. Yu. Yakovlev, “Electric discharge in air in a deeply subcritical field of a quasi-optical microwave beam”, Zhurnal Tekhnicheskoi Fiziki, 86:4 (2016), 28–33 ; Tech. Phys., 61:4 (2016), 505–510 |
3
|
|
2012 |
| 12. |
K. V. Aleksandrov, I. I. Esakov, P. B. Lavrov, A. A. Ravaev, K. V. Khodataev, “Regular set of gas discharges on the surface of a dielectric in a quasi-optical microwave beam”, Zhurnal Tekhnicheskoi Fiziki, 82:8 (2012), 55–61 ; Tech. Phys., 57:8 (2012), 1095–1100 |
2
|
| 13. |
L. P. Grachev, I. I. Esakov, P. B. Lavrov, A. A. Ravaev, “Induced field of an electromagnetic vibrator above a conducting screen placed in a microwave beam”, Zhurnal Tekhnicheskoi Fiziki, 82:2 (2012), 73–78 ; Tech. Phys., 57:2 (2012), 230–235 |
8
|
|
| Organisations |
|
|