Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Oskolkov, Konstantin Il'ich
(1946–2024)

Statistics
in MathSciNet: 33 (32)
in zbMATH: 32 (31)
in Web of Science: 6 (6)
in Scopus: 5 (5)
Professor
Doctor of physico-mathematical sciences (1972)
Birth date: 17.02.1946
Website: http://www.math.sc.edu/konstantin-oskolkov
Keywords: Fourier Series, Approximation, Oscillatory Sums and Integrals, Schrödinger type equations, Wavelets and Bases.

https://www.mathnet.ru/eng/person18311
List of publications on Google Scholar
https://zbmath.org/authors/ai:oskolkov.konstantin-i
https://mathscinet.ams.org/mathscinet/MRAuthorID/199229
https://www.researchgate.net/profile/K_Oskolkov

List of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

Articles

1. V. I. Berdyshev, O. V. Besov, B. S. Kashin, S. V. Konyagin, Yu. V. Malykhin, K. I. Oskolkov, A. S. Telyakovskii, D. S. Telyakovskii, V. N. Temlyakov, N. N. Kholshchevnikova, “Sergei Aleksandrovich Telyakovskii”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S7–S11  mathnet  crossref  crossref  mathscinet  isi  elib
2. K. I. Oskolkov, M. A. Chahkiev, “Traces of the discrete Hilbert transform with quadratic phase”, Proc. Steklov Inst. Math., 280 (2013), 248–262  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus
3. K. I. Oskolkov, M. A. Chakhkiev, “On Riemann “nondifferentiable” function and Schrödinger equation”, Proc. Steklov Inst. Math., 269 (2010), 186–196  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
4. K. I. Oskolkov, “Linear and Nonlinear Methods of Relief Approximation”, Journal of Mathematical Sciences, 155:1 (2008), 129–152  mathnet  crossref  mathscinet  zmath  scopus
5. K. I. Oskolkov, “The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a Problem of Chowla”, Proc. Steklov Inst. Math., 248 (2005), 197–215  mathnet  mathscinet  zmath
6. K. I. Oskolkov, “On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases”, Math. Notes, 74:2 (2003), 232–244  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
7. K. I. Oskolkov, “Ridge Approximation, Chebyshev–Fourier Analysis and Optimal Quadrature Formulas”, Proc. Steklov Inst. Math., 219 (1997), 265–280  mathnet  mathscinet  zmath
8. K. I. Oskolkov, “Vinogradov series in the Cauchy problem for equations of Schrödinger type”, Proc. Steklov Inst. Math., 200 (1993), 291–315  mathnet  mathscinet  zmath
9. K. I. Oskolkov, “Vinogradov's series and integrals and their applications”, Proc. Steklov Inst. Math., 190 (1992), 193–229  mathnet  mathscinet  zmath
10. K. I. Oskolkov, “Properties of a class of I. M. Vinogradov series”, Dokl. Math., 37:3 (1988), 737–741  mathnet  mathscinet  zmath
11. G. I. Arkhipov, K. I. Oskolkov, “On a special trigonometric series and its applications”, Math. USSR-Sb., 62:1 (1989), 145–155  mathnet  crossref  mathscinet  zmath
12. K. I. Oskolkov, “Spectra of uniform convergence”, Dokl. Akad. Nauk SSSR, 288:1 (1986), 54–58  mathnet  mathscinet  zmath
13. K. I. Oskolkov, “On strong summability of Fourier series”, Proc. Steklov Inst. Math., 172 (1987), 303–314  mathnet  mathscinet  zmath
14. K. I. Oskolkov, “A subsequence of Fourier sums of integrable functions”, Proc. Steklov Inst. Math., 167 (1986), 267–290  mathnet  mathscinet  zmath
15. K. I. Oskolkov, “Luzin's $C$-property for a conjugate function”, Proc. Steklov Inst. Math., 164 (1985), 141–153  mathnet  mathscinet  zmath
16. K. I. Oskolkov, “Partial sums of the Taylor series of a bounded analytic function”, Proc. Steklov Inst. Math., 157 (1983), 165–172  mathnet  mathscinet  zmath
17. K. I. Oskolkov, “Lebesgue inequality in the mean”, Math. Notes, 25:4 (1979), 286–288  mathnet  crossref  mathscinet  zmath
18. K. I. Oskolkov, “On the optimality of the quadrature formula with equidistant nodes on classes of periodic functions”, Dokl. Akad. Nauk SSSR, 249:1 (1979), 49–52  mathnet  mathscinet  zmath
19. K. I. Oskolkov, “Polygonal approximation of functions of two variables”, Math. USSR-Sb., 35:6 (1979), 851–861  mathnet  crossref  mathscinet  zmath  isi
20. K. I. Oskolkov, “Approximation properties of summable functions on sets of full measure”, Math. USSR-Sb., 32:4 (1977), 489–514  mathnet  crossref  mathscinet  zmath  isi
21. K. I. Oskolkov, “Sequences of norms of Fourier sums of bounded functions”, Proc. Steklov Inst. Math., 143 (1980), 137–151  mathnet  mathscinet  zmath
22. K. I. Oskolkov, “Uniform modulus of continuity of summable functions on sets of positive measure”, Dokl. Akad. Nauk SSSR, 229:2 (1976), 304–306  mathnet  mathscinet  zmath
23. K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Math. Notes, 18:4 (1975), 895–902  mathnet  crossref  mathscinet  zmath
24. K. I. Oskolkov, “An estimate for the approximation of continuous functions by sequences of Fourier sum”, Proc. Steklov Inst. Math., 134 (1977), 273–288  mathnet  mathscinet  zmath
25. K. I. Oskolkov, “An estimate of the rate of approximation of a continuous function and its conjugate by Fourier sums on a set of total measure”, Math. USSR-Izv., 8:6 (1974), 1372–1386  mathnet  crossref  mathscinet  zmath
26. K. I. Oskolkov, “Fourier sums for the Banach indicatrix”, Math. Notes, 15:4 (1974), 309–312  mathnet  crossref  mathscinet  zmath
27. K. I. Oskolkov, “Generalized variation, the Banach indicatrix, and the uniform convergence of Fourier series”, Math. Notes, 12:3 (1972), 619–625  mathnet  crossref  mathscinet  zmath
28. K. I. Oskolkov, “Subsequences of the Fourier sums of functions with a given modulus of continuity”, Math. USSR-Sb., 17:3 (1972), 441–465  mathnet  crossref  mathscinet  zmath
29. K. I. Oskolkov, “The sharpness of the Lebesgue estimate for the approximation of functions with prescribed modulus of continuity by Fourier sums”, Proc. Steklov Inst. Math., 112 (1971), 349–357  mathnet  mathscinet  zmath
30. K. I. Oskolkov, “Letter to the editor”, Mat. Zametki, 9:6 (1971), 735  mathnet  zmath
31. K. I. Oskolkov, “The norm of a certain polynomial operator”, Siberian Math. J., 12:5 (1971), 828–833  mathnet  crossref  mathscinet  zmath  scopus
32. K. I. Oskolkov, “The convergence of trigonometric series to functions of bounded variation”, Math. Notes, 8:1 (1970), 496–503  mathnet  crossref  mathscinet  zmath

Thesis

33. K. I. Oskolkov, “Approximate properties of classes of periodic functions”, Mat. Zametki, 27:4 (1980), 651–666  mathnet  mathscinet  zmath

Personalia

34. K. I. Oskolkov, S. B. Stechkin, S. A. Telyakovskii, “Petr Vasil'evich Galkin”, Math. Notes, 10:6 (1971), 787–789  mathnet  crossref  mathscinet  zmath

Presentations in Math-Net.Ru
1. Êâàäðàòóðû è ðèäæ-àïïðîêñèìàöèÿ.
K. I. Oskolkov
Seminar on Theory of Functions of Real Variables
February 19, 2021 18:30   
2. On a special trigonometric series and its applications, as well as the memories
K. I. Oskolkov
International conference on Analytic Number Theory dedicated to 75th anniversary of G. I. Arkhipov and S. M. Voronin
December 16, 2020 17:00   
3. Î ìóëüòèôðàêòàëàõ
K. I. Oskolkov
Seminar on Approximation Theory
November 3, 2011 10:30

Organisations