Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Rasulov, Tulkin Husenovich

Statistics Math-Net.Ru
Total publications: 38
Scientific articles: 38
Presentations: 3

Number of views:
This page:2247
Abstract pages:12912
Full texts:4912
References:2172
Rasulov, Tulkin Husenovich
Professor
Doctor of physico-mathematical sciences (2021)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 25.12.1976
E-mail: ,
Keywords: eigenvalues, spectrum.
UDC: 517.984

Subject:

Spectral properties of the block operator matrices.

   
Main publications:
  1. M. I. Muminov, T. H. Rasulov, “The Faddeev Equation and Essential Spectrum of a Hamiltonian in Fock Space”, Methods of Functional Analysis and Topology, 17:1 (2011), 47–57
  2. T. H. Rasulov, “Investigations of the Essential Spectrum of a Hamiltonian in Fock Space”, Applied Mathematics & Information Sciences, 4:3 (2010), 395–412
  3. T. H. Rasulov, M. I. Muminov, M. Hasanov, “On the Spectrum of a Model Operator in Fock Space”, Methods of Functional Analysis and Topology, 15:4 (2009), 369–383  mathscinet
  4. S. Albeverio, S. N. Lakaev, T. H. Rasulov, “On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum asymptotics”, Journal of Statistical Physics, 127:2 (2007), 191–220  crossref  mathscinet  zmath
  5. S. Albeverio, S. N. Lakaev, T. H. Rasulov, “The Efimov Effect for a Model Operator Associated to a System of three non Conserved Number of Particles”, Methods of Functional Analysis and Topology, 13:1 (2007), 1–16  mathscinet  zmath

https://www.mathnet.ru/eng/person18414
List of publications on Google Scholar
https://orcid.org/0000-0002-2868-4390
https://www.scopus.com/authid/detail.url?authorId=22036289500

Full list of publications: Download file (31 kB)

Publications in Math-Net.Ru Citations
2024
1. T. H. Rasulov, A. M. Khalkhuzhaev, M. A. Pardabaev, Kh. G. Khayitova, “Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10,  77–89  mathnet
2. T. Kh. Rasulov, D. E. Ismoilova, “Spectral relations for a matrix model in fermionic Fock space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  91–96  mathnet
3. M. I. Muminov, I. N. Bozorov, T. Kh. Rasulov, “On the number of components of the essential spectrum of one $2\times2$ operator matrix”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2,  85–90  mathnet
2023
4. T. H. Rasulov, E. B. Dilmurodov, “Main properties of the Faddeev equation for $2 \times 2$ operator matrices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  53–58  mathnet
5. M. Rehman, T. Rasulov, B. Aminov, “Non-negative matrices and their structured singular values”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  36–45  mathnet
6. J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov, “Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9,  3–19  mathnet 4
7. B. I. Bahronov, T. H. Rasulov, M. Rehman, “Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7,  3–12  mathnet 4
8. Tulkin Rasulov, Elyor Dilmurodov, “The first Schur complement for a lattice spin-boson model with at most two photons”, Nanosystems: Physics, Chemistry, Mathematics, 14:3 (2023),  304–311  mathnet  elib
9. Tulkin H. Rasulov, Bekzod I. Bahronov, “Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation”, Nanosystems: Physics, Chemistry, Mathematics, 14:2 (2023),  151–157  mathnet  elib
10. T. H. Rasulov, H. M. Latipov, “Description of the spectrum of one fourth-order operator matrix”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023),  427–445  mathnet
2020
11. T. H. Rasulov, E. B. Dilmurodov, “Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics”, Nanosystems: Physics, Chemistry, Mathematics, 11:2 (2020),  138–144  mathnet  isi  elib 7
12. T. H. Rasulov, E. B. Dilmurodov, “Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum”, TMF, 205:3 (2020),  368–390  mathnet  mathscinet  elib; Theoret. and Math. Phys., 205:3 (2020), 1564–1584  isi  scopus 11
2019
13. T. H. Rasulov, E. B. Dilmurodov, “Threshold analysis for a family of $2\times2$ operator matrices”, Nanosystems: Physics, Chemistry, Mathematics, 10:6 (2019),  616–622  mathnet  isi 5
14. T. H. Rasulov, N. A. Tosheva, “Analytic description of the essential spectrum of a family of $3\times 3$ operator matrices”, Nanosystems: Physics, Chemistry, Mathematics, 10:5 (2019),  511–519  mathnet  isi
2016
15. T. H. Rasulov, “Branches of the essential spectrum of the lattice spin-boson model with at most two photons”, TMF, 186:2 (2016),  293–310  mathnet  mathscinet  elib; Theoret. and Math. Phys., 186:2 (2016), 251–267  isi  scopus 15
2015
16. Mukhiddin I. Muminov, Tulkin H. Rasulov, “Universality of the discrete spectrum asymptotics of the three-particle Schrödinger operator on a lattice”, Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015),  280–293  mathnet  isi  elib 2
17. T. Kh. Rasulov, Z. D. Rasulova, “On the spectrum of a three-particle model operator on a lattice with non-local potentials”, Sib. Èlektron. Mat. Izv., 12 (2015),  168–184  mathnet
18. M. É. Muminov, T. Kh. Rasulov, “An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix”, Sibirsk. Mat. Zh., 56:4 (2015),  878–895  mathnet  mathscinet  elib; Siberian Math. J., 56:4 (2015), 699–713  isi  elib  scopus 1
2014
19. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014),  60–77  mathnet 3
20. T. Kh. Rasulov, R. T. Mukhitdinov, “The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1,  61–70  mathnet; Russian Math. (Iz. VUZ), 58:1 (2014), 52–59  scopus 13
21. M. I. Muminov, T. H. Rasulov, “On the number of eigenvalues of the family of operator matrices”, Nanosystems: Physics, Chemistry, Mathematics, 5:5 (2014),  619–625  mathnet  elib
22. T. H. Rasulov, Z. D. Rasulova, “Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials”, Nanosystems: Physics, Chemistry, Mathematics, 5:3 (2014),  327–342  mathnet  elib
23. T. H. Rasulov, I. O. Umarova, “Spectrum and resolvent of a block operator matrix”, Sib. Èlektron. Mat. Izv., 11 (2014),  334–344  mathnet
24. T. H. Rasulov, E. B. Dilmurodov, “Investigations of the Numerical Range of a Operator Matrix”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  50–63  mathnet  zmath  elib 3
2012
25. T. H. Rasulov, “Structure of the essential spectrum of a model operator associated to a system of three particles on a lattice”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012),  34–43  mathnet  zmath
2011
26. T. Kh. Rasulov, “On the number of eigenvalues of a matrix operator”, Sibirsk. Mat. Zh., 52:2 (2011),  400–415  mathnet  mathscinet; Siberian Math. J., 52:2 (2011), 316–328  isi  scopus 4
27. T. H. Rasulov, “Essential spectrum of a model operator associated with a three-particle system on a lattice”, TMF, 166:1 (2011),  95–109  mathnet  mathscinet; Theoret. and Math. Phys., 166:1 (2011), 81–93  isi  scopus 2
28. T. Kh. Rasulov, “On the essential spectrum of a model operator associated with the system of three particles on a lattice”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011),  42–51  mathnet 1
29. T. H. Rasulov, Kh. Kh. Turdiev, “Some spectral properties of a generalized Friedrichs model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  181–188  mathnet 1
30. T. Kh. Rasulov, A. A. Rakhmonov, “The Faddeev equation and location of the essential spectrum of a three-particle model operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  170–180  mathnet
2010
31. T. H. Rasulov, “Study of the essential spectrum of a matrix operator”, TMF, 164:1 (2010),  62–77  mathnet; Theoret. and Math. Phys., 164:1 (2010), 883–895  isi  scopus 4
32. T. H. Rasulov, “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, TMF, 163:1 (2010),  34–44  mathnet  zmath; Theoret. and Math. Phys., 163:1 (2010), 429–437  isi  scopus 23
2009
33. T. H. Rasulov, “Investigation of the spectrum of a model operator in a Fock space”, TMF, 161:2 (2009),  164–175  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 161:2 (2009), 1460–1470  isi  scopus 3
2008
34. T. H. Rasulov, “The Faddeev equation and the location of the essential spectrum of a model operator for several particles”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 12,  59–69  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 52:12 (2008), 50–59 16
35. T. H. Rasulov, “On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian”, Mat. Zametki, 83:1 (2008),  86–94  mathnet  mathscinet  zmath; Math. Notes, 83:1 (2008), 80–87  isi  scopus 8
2007
36. T. H. Rasulov, “Discrete spectrum of a model operator in Fock space”, TMF, 152:3 (2007),  518–527  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 152:3 (2007), 1313–1321  isi  scopus 4
2003
37. S. N. Lakaev, T. H. Rasulov, “Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum”, Funktsional. Anal. i Prilozhen., 37:1 (2003),  81–84  mathnet  mathscinet  zmath; Funct. Anal. Appl., 37:1 (2003), 69–71  isi  scopus 15
38. S. N. Lakaev, T. H. Rasulov, “A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators”, Mat. Zametki, 73:4 (2003),  556–564  mathnet  mathscinet  zmath; Math. Notes, 73:4 (2003), 521–528  isi  scopus 20

Presentations in Math-Net.Ru
1. Lattice spin-boson model with at most two photons
T. H. Rasulov
Functional Analysis and Quantum Systems
March 27, 2023 18:00
2. Анализ спектра решетчатой модели спин-бозон с не более чем двумя фотонами
T. H. Rasulov
Functional analysis and its applications
June 4, 2020 17:00
3. Spectral inclusion for unbounded diagonally dominant $n\times n$ operator matrices
T. H. Rasulov
Functional analysis and its applications
January 17, 2019 10:30

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025