Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Borodin, Oleg Veniaminovich

Statistics Math-Net.Ru
Total publications: 81
Scientific articles: 80

Number of views:
This page:5808
Abstract pages:37615
Full texts:10517
References:5461
Senior Researcher
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person18494
List of publications on Google Scholar
https://zbmath.org/authors/ai:borodin.oleg-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/230394

Publications in Math-Net.Ru Citations
2025
1. O. V. Borodin, A. O. Ivanova, “Describing $3$-faces in $3$-polytopes without adjacent triangles”, Sibirsk. Mat. Zh., 66:1 (2025),  20–26  mathnet; Siberian Math. J., 66:1 (2025), 16–21
2024
2. O. V. Borodin, A. O. Ivanova, “Describing edges in normal plane maps having no adjacent $3$-faces”, Sib. Èlektron. Mat. Izv., 21:1 (2024),  495–500  mathnet
3. O. V. Borodin, A. O. Ivanova, “Light $3$-paths in $3$-polytopes without adjacent triangles”, Sibirsk. Mat. Zh., 65:2 (2024),  249–257  mathnet; Siberian Math. J., 65:2 (2024), 257–264
2022
4. O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulations on surfaces”, Sibirsk. Mat. Zh., 63:4 (2022),  796–804  mathnet; Siberian Math. J., 63:4 (2022), 662–669 1
2021
5. O. V. Borodin, A. O. Ivanova, “Tight description of faces in torus triangulations with minimum degree 5”, Sib. Èlektron. Mat. Izv., 18:2 (2021),  1475–1481  mathnet  isi
6. Ts. Ch.-D. Batueva, O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices”, Sib. Èlektron. Mat. Izv., 18:1 (2021),  456–463  mathnet  isi
7. O. V. Borodin, A. O. Ivanova, “A tight description of $3$-polytopes by their major $3$-paths”, Sibirsk. Mat. Zh., 62:3 (2021),  498–508  mathnet  elib; Siberian Math. J., 62:3 (2021), 400–408  isi  scopus
8. O. V. Borodin, A. O. Ivanova, “Heights of minor faces in 3-polytopes”, Sibirsk. Mat. Zh., 62:2 (2021),  250–268  mathnet  elib; Siberian Math. J., 62:2 (2021), 199–214  isi  scopus
2020
9. O. V. Borodin, A. O. Ivanova, “Soft 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 17 (2020),  1863–1868  mathnet
10. O. V. Borodin, A. O. Ivanova, “An extension of Franklin's Theorem”, Sib. Èlektron. Mat. Izv., 17 (2020),  1516–1521  mathnet  isi 3
11. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $8$”, Sib. Èlektron. Mat. Izv., 17 (2020),  496–501  mathnet  isi
2019
12. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Sib. Èlektron. Mat. Izv., 16 (2019),  1334–1344  mathnet  isi 5
13. O. V. Borodin, A. O. Ivanova, “Low faces of restricted degree in $3$-polytopes”, Sibirsk. Mat. Zh., 60:3 (2019),  527–536  mathnet  elib; Siberian Math. J., 60:3 (2019), 405–411  isi  scopus
14. O. V. Borodin, A. O. Ivanova, “Light minor $5$-stars in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 60:2 (2019),  351–359  mathnet  elib; Siberian Math. J., 60:2 (2019), 272–278  isi  scopus
2018
15. O. V. Borodin, A. O. Ivanova, “Light 3-stars in sparse plane graphs”, Sib. Èlektron. Mat. Izv., 15 (2018),  1344–1352  mathnet  isi 1
16. V. A. Aksenov, O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $9$”, Sib. Èlektron. Mat. Izv., 15 (2018),  1174–1181  mathnet  isi 2
17. O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 59:1 (2018),  56–64  mathnet  elib; Siberian Math. J., 59:1 (2018), 43–49  isi  scopus 3
2017
18. O. V. Borodin, A. O. Ivanova, D. V. Nikiforov, “Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices”, Sibirsk. Mat. Zh., 58:4 (2017),  771–778  mathnet  elib; Siberian Math. J., 58:4 (2017), 600–605  isi  elib  scopus 7
19. O. V. Borodin, A. O. Ivanova, “The height of faces of $3$-polytopes”, Sibirsk. Mat. Zh., 58:1 (2017),  48–55  mathnet  elib; Siberian Math. J., 58:1 (2017), 37–42  isi  elib  scopus 4
2016
20. O. V. Borodin, A. O. Ivanova, “Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$”, Sib. Èlektron. Mat. Izv., 13 (2016),  584–591  mathnet  isi 7
21. O. V. Borodin, A. O. Ivanova, “Describing $4$-paths in $3$-polytopes with minimum degree $5$”, Sibirsk. Mat. Zh., 57:5 (2016),  981–987  mathnet  elib; Siberian Math. J., 57:5 (2016), 764–768  isi  elib  scopus 7
22. O. V. Borodin, A. O. Ivanova, “Light and low $5$-stars in normal plane maps with minimum degree $5$”, Sibirsk. Mat. Zh., 57:3 (2016),  596–602  mathnet  mathscinet  elib; Siberian Math. J., 57:3 (2016), 470–475  isi  elib  scopus 14
2015
23. O. V. Borodin, A. O. Ivanova, “Heights of minor faces in triangle-free $3$-polytopes”, Sibirsk. Mat. Zh., 56:5 (2015),  982–987  mathnet  mathscinet  elib; Siberian Math. J., 56:5 (2015), 783–788  isi  elib  scopus 8
24. O. V. Borodin, A. O. Ivanova, “Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$”, Sibirsk. Mat. Zh., 56:4 (2015),  775–789  mathnet  mathscinet  elib; Siberian Math. J., 56:4 (2015), 612–623  isi  elib  scopus 6
25. O. V. Borodin, A. O. Ivanova, “The vertex-face weight of edges in $3$-polytopes”, Sibirsk. Mat. Zh., 56:2 (2015),  338–350  mathnet  mathscinet  elib; Siberian Math. J., 56:2 (2015), 275–284  isi  elib  scopus 14
2014
26. O. V. Borodin, A. O. Ivanova, “The weight of edge in 3-polytopes”, Sib. Èlektron. Mat. Izv., 11 (2014),  457–463  mathnet 3
27. O. V. Borodin, A. O. Ivanova, “Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$”, Sibirsk. Mat. Zh., 55:1 (2014),  17–24  mathnet  mathscinet; Siberian Math. J., 55:1 (2014), 12–18  isi  scopus 5
2011
28. O. V. Borodin, A. O. Ivanova, “2-distance 4-coloring of planar subcubic graphs”, Diskretn. Anal. Issled. Oper., 18:2 (2011),  18–28  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:4 (2011), 535–541  scopus 5
29. O. V. Borodin, A. V. Kostochka, “Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$”, Sibirsk. Mat. Zh., 52:5 (2011),  1004–1010  mathnet  mathscinet; Siberian Math. J., 52:5 (2011), 796–801  isi  scopus 23
30. O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Sibirsk. Mat. Zh., 52:3 (2011),  522–541  mathnet  mathscinet; Siberian Math. J., 52:3 (2011), 411–425  isi  scopus 15
31. O. V. Borodin, A. O. Ivanova, “Injective $(\Delta+1)$-coloring of planar graphs with girth 6”, Sibirsk. Mat. Zh., 52:1 (2011),  30–38  mathnet  mathscinet; Siberian Math. J., 52:1 (2011), 23–29  isi  scopus 18
2010
32. O. V. Borodin, “Acyclic 4-colorability of planar graphs without 4- and 5-cycles”, Diskretn. Anal. Issled. Oper., 17:2 (2010),  20–38  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:1 (2011), 31–43  scopus 12
33. O. V. Borodin, A. O. Ivanova, “Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$”, Sib. Èlektron. Mat. Izv., 7 (2010),  275–283  mathnet 8
2009
34. O. V. Borodin, “Acyclic 4-coloring of plane graphs without cycles of length 4 and 6”, Diskretn. Anal. Issled. Oper., 16:6 (2009),  3–11  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:4 (2010), 490–495  scopus 12
35. O. V. Borodin, “Acyclic 3-choosability of plane graphs without cycles of length from 4 to 12”, Diskretn. Anal. Issled. Oper., 16:5 (2009),  26–33  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:2 (2010), 158–162  scopus 15
36. O. V. Borodin, A. O. Ivanova, “Near-proper vertex 2-colorings of sparse graphs”, Diskretn. Anal. Issled. Oper., 16:2 (2009),  16–20  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 4:1 (2010), 21–23  scopus 18
37. O. V. Borodin, A. O. Ivanova, “Partitioning sparse plane graphs into two induced subgraphs of small degree”, Sib. Èlektron. Mat. Izv., 6 (2009),  13–16  mathnet  mathscinet 2
38. O. V. Borodin, A. O. Ivanova, “List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$”, Sibirsk. Mat. Zh., 50:6 (2009),  1216–1224  mathnet  mathscinet; Siberian Math. J., 50:6 (2009), 958–964  isi  scopus 13
2008
39. O. V. Borodin, I. G. Dmitriev, A. O. Ivanova, “Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников”, Diskretn. Anal. Issled. Oper., 15:1 (2008),  11–16  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 3:1 (2009), 28–31  scopus 10
40. O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West, “Circular $(5,2)$-coloring of sparse graphs”, Sib. Èlektron. Mat. Izv., 5 (2008),  417–426  mathnet  mathscinet 13
41. O. V. Borodin, A. O. Ivanova, “List $2$-arboricity of planar graphs with no triangles at distance less than two”, Sib. Èlektron. Mat. Izv., 5 (2008),  211–214  mathnet  mathscinet 2
42. O. V. Borodin, A. O. Ivanova, “Planar graphs without triangular $4$-cycles are $3$-choosable”, Sib. Èlektron. Mat. Izv., 5 (2008),  75–79  mathnet  mathscinet 9
2007
43. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  13–30  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 2:3 (2008), 317–328  scopus 23
44. O. V. Borodin, A. O. Ivanova, A. V. Kostochka, N. N. Sheikh, “Minimax degrees of quasiplane graphs without $4$-faces”, Sib. Èlektron. Mat. Izv., 4 (2007),  435–439  mathnet  mathscinet  zmath 2
45. O. V. Borodin, A. O. Ivanova, B. S. Stechkin, “Decomposing a planar graph into a forest and a subgraph of restricted maximum degree”, Sib. Èlektron. Mat. Izv., 4 (2007),  296–299  mathnet  mathscinet  zmath 3
2006
46. O. V. Borodin, A. O. Ivanova, A. V. Kostochka, “Oriented 5-coloring of sparse plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 1:1 (2007), 9–17  scopus 25
47. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$”, Sib. Èlektron. Mat. Izv., 3 (2006),  441–450  mathnet  zmath 13
48. O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable”, Sib. Èlektron. Mat. Izv., 3 (2006),  428–440  mathnet  zmath 12
49. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “List $(p,q)$-coloring of sparse plane graphs”, Sib. Èlektron. Mat. Izv., 3 (2006),  355–361  mathnet  mathscinet  zmath 5
2005
50. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  32–47  mathnet  mathscinet  zmath 12
51. O. V. Borodin, A. O. Ivanova, “An oriented colouring of planar graphs with girth at least $4$”, Sib. Èlektron. Mat. Izv., 2 (2005),  239–249  mathnet  mathscinet  zmath 5
52. O. V. Borodin, A. O. Ivanova, “An oriented $7$-colouring of planar graphs with girth at least $7$”, Sib. Èlektron. Mat. Izv., 2 (2005),  222–229  mathnet  mathscinet  zmath 10
2004
53. O. V. Borodin, A. N. Glebov, “A sufficient condition for the 3-colorability of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004),  13–29  mathnet  mathscinet  zmath 5
54. O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov, “Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable”, Sib. Èlektron. Mat. Izv., 1 (2004),  129–141  mathnet  mathscinet  zmath 34
55. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a $3$-coloring from a $7$-face onto a plane graph without $3$-cycles”, Sib. Èlektron. Mat. Izv., 1 (2004),  117–128  mathnet  mathscinet  zmath 10
56. O. V. Borodin, A. O. Ivanova, T. K. Neustroeva, “$2$-distance coloring of sparse planar graphs”, Sib. Èlektron. Mat. Izv., 1 (2004),  76–90  mathnet  mathscinet  zmath 21
2003
57. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003),  3–11  mathnet  mathscinet  zmath 14
2002
58. O. V. Borodin, “Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002),  29–39  mathnet  mathscinet  zmath 15
59. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On the continuation of a 3-coloring from two vertices in a plane graph without 3-cycles”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002),  3–26  mathnet  mathscinet  zmath 7
60. O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces”, Mat. Zametki, 72:1 (2002),  35–37  mathnet  mathscinet  zmath; Math. Notes, 72:1 (2002), 31–42  isi  scopus 1
2001
61. O. V. Borodin, A. N. Glebov, “On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  34–53  mathnet  mathscinet  zmath 17
62. O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “Minimal degrees and chromatic numbers of squares of planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  9–33  mathnet  mathscinet  zmath 31
63. O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel, “The structure of plane triangulations in terms of clusters and stars”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001),  15–39  mathnet  mathscinet  zmath 22
64. S. V. Avgustinovich, O. V. Borodin, A. È. Frid, “Distributive colorings of plane triangulations of minimum degree five”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001),  3–16  mathnet  mathscinet  zmath 7
2000
65. V. A. Aksenov, O. V. Borodin, A. N. Glebov, “On a structural property of plane graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000),  5–19  mathnet  mathscinet  zmath 1
66. O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic $k$-strong coloring of maps on surfaces”, Mat. Zametki, 67:1 (2000),  36–45  mathnet  mathscinet  zmath; Math. Notes, 67:1 (2000), 29–35  isi 4
1999
67. O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic coloring of 1-planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999),  20–35  mathnet  mathscinet  zmath 11
1998
68. O. V. Borodin, D. V. Loparev, “The height of small faces in planar normal maps”, Diskretn. Anal. Issled. Oper., Ser. 1, 5:4 (1998),  6–17  mathnet  mathscinet  zmath 10
69. O. V. Borodin, D. R. Vudal, “Weight of faces in plane maps”, Mat. Zametki, 64:5 (1998),  648–657  mathnet  mathscinet  zmath; Math. Notes, 64:5 (1998), 562–570  isi 16
1996
70. O. V. Borodin, “Colorings and topological representations of graphs”, Diskretn. Anal. Issled. Oper., 3:4 (1996),  3–27  mathnet  mathscinet  zmath 1
1995
71. S. V. Avgustinovich, O. V. Borodin, “Neighborhoods of edges in normal cards”, Diskretn. Anal. Issled. Oper., 2:3 (1995),  3–9  mathnet  mathscinet  zmath 12
1993
72. O. V. Borodin, “Structure of neighborhoods of edges in planar graphs and simultaneous coloring of vertices, edges and faces”, Mat. Zametki, 53:5 (1993),  35–47  mathnet  mathscinet  zmath; Math. Notes, 53:5 (1993), 483–489  isi 9
73. O. V. Borodin, “Bidegree of graph and degeneracy number”, Mat. Zametki, 53:4 (1993),  13–20  mathnet  mathscinet  zmath; Math. Notes, 53:4 (1993), 367–372  isi 1
1992
74. O. V. Borodin, “A structural theorem on planar graphs and its application to coloring”, Diskr. Mat., 4:1 (1992),  60–65  mathnet  mathscinet  zmath 5
75. O. V. Borodin, “Minimal weight of face in plane triangulations without 4-vertices”, Mat. Zametki, 51:1 (1992),  16–19  mathnet  mathscinet  zmath; Math. Notes, 51:1 (1992), 11–13  isi 18
1991
76. O. V. Borodin, “Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps”, Diskr. Mat., 3:4 (1991),  24–27  mathnet  mathscinet  zmath 7
77. O. V. Borodin, I. G. Dmitriev, “On a characterization of chromatically rigid polynomials”, Sibirsk. Mat. Zh., 32:1 (1991),  22–27  mathnet  mathscinet  zmath; Siberian Math. J., 32:1 (1991), 17–21  isi 1
1990
78. O. V. Borodin, “Generalization of a theorem of Kotzig and a prescribed coloring of the edges of planar graphs”, Mat. Zametki, 48:6 (1990),  22–28  mathnet  mathscinet  zmath; Math. Notes, 48:6 (1990), 1186–1190  isi 13
1989
79. O. V. Borodin, “Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs”, Mat. Zametki, 46:5 (1989),  9–12  mathnet  mathscinet  zmath; Math. Notes, 46:5 (1989), 835–837  isi 33
1976
80. O. V. Borodin, “A proof of Grünbaum's conjecture on the acyclic $5$-colorability of planar graphs”, Dokl. Akad. Nauk SSSR, 231:1 (1976),  18–20  mathnet  mathscinet  zmath 3

2010
81. S. V. Avgustinovich, O. V. Borodin, A. V. Kostochka, V. D. Mazurov, “In memory of Dmitry Germanovich Fon-Der-Flaass”, Sib. Èlektron. Mat. Izv., 7 (2010),  1–4  mathnet  mathscinet 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025