Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Pakuliak, Stanislav Zdislavovich

Statistics Math-Net.Ru
Total publications: 40
Scientific articles: 40
Presentations: 2

Number of views:
This page:2472
Abstract pages:14067
Full texts:3246
References:1742
E-mail: ,

https://www.mathnet.ru/eng/person18692
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/257268

Publications in Math-Net.Ru Citations
2025
1. Andrii Liashyk, Stanislav Pakuliak, Etic Ragoucy, “Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models”, SIGMA, 21 (2025), 078, 28 pp.  mathnet
2021
2. A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models”, TMF, 206:1 (2021),  23–46  mathnet  mathscinet; Theoret. and Math. Phys., 206:1 (2021), 19–39  isi 7
2020
3. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104, 31 pp.  mathnet  mathscinet  isi  scopus 7
4. Andrii N. Liashyk, Stanislav Z. Pakuliak, “Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types”, SIGMA, 16 (2020), 120, 23 pp.  mathnet  mathscinet  isi  scopus 4
2019
5. A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors”, J. Stat. Mech., 2019 (2019), 44001, 24 pp.  mathnet  mathscinet  isi  scopus 11
6. A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, TMF, 201:2 (2019),  153–174  mathnet  mathscinet  elib; Theoret. and Math. Phys., 201:2 (2019), 1545–1564  isi  scopus 8
2018
7. A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018),  256–278  mathnet  mathscinet  isi  scopus 14
8. Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018),  6–30  mathnet  isi 13
2017
9. Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017),  1–31  mathnet  mathscinet 11
10. A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004, 22 pp.  mathnet  mathscinet  isi  elib  scopus 18
11. A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 923 (2017),  277–311  mathnet  mathscinet  isi  scopus 21
12. A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Uspekhi Mat. Nauk, 72:1(433) (2017),  37–106  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 72:1 (2017), 33–99  isi  scopus 28
2016
13. A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005, 28 pp.  mathnet  mathscinet  isi  elib  scopus 12
14. A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016),  902–927  mathnet  isi  elib  scopus 14
15. Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp.  mathnet  mathscinet  isi  elib  scopus 14
2015
16. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001, 21 pp.  mathnet  mathscinet  zmath  isi  elib  scopus 20
17. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015),  459–481  mathnet  mathscinet  isi  elib  scopus 23
18. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp.  mathnet  mathscinet  isi  elib  scopus 23
19. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063, 20 pp.  mathnet  mathscinet  isi  elib  scopus 19
2014
20. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\hat{\mathfrak{gl}}_N)$”, J. Phys. A, 47:10 (2014), 105202, 16 pp.  mathnet  mathscinet  zmath  isi  scopus 11
21. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix”, Nuclear Phys. B, 881 (2014),  343–368  mathnet  mathscinet  zmath  isi  scopus 28
22. S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix”, TMF, 181:3 (2014),  515–537  mathnet  mathscinet  elib; Theoret. and Math. Phys., 181:3 (2014), 1566–1584  isi  elib  scopus 17
23. S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case”, TMF, 180:1 (2014),  51–71  mathnet  mathscinet  elib; Theoret. and Math. Phys., 180:1 (2014), 795–814  isi  elib  scopus 8
24. S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, TMF, 178:3 (2014),  363–389  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 178:3 (2014), 314–335  isi  elib  scopus 10
2013
25. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in $SU(3)$-invariant integrable models”, J. Stat. Mech., 2013:4 (2013), 4033, 16 pp.  mathnet  mathscinet  isi  scopus 26
26. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech., 2013:2 (2013), 2020, 24 pp.  mathnet  mathscinet  isi  scopus 25
27. Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix”, SIGMA, 9 (2013), 058, 23 pp.  mathnet  mathscinet  isi  scopus 16
2012
28. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Highest coefficient of scalar products in $SU(3)$-invariant integrable models”, J. Stat. Mech., 2012:9 (2012), 9003, 17 pp.  mathnet  mathscinet  isi  scopus 17
29. S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “The algebraic Bethe ansatz for scalar products in $SU(3)$-invariant integrable models”, J. Stat. Mech., 2012 (2012), 10017, 25 pp.  mathnet  mathscinet  isi  scopus 32
2010
30. Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, “Universal Bethe Ansatz and Scalar Products of Bethe Vectors”, SIGMA, 6 (2010), 094, 22 pp.  mathnet  mathscinet  isi  scopus 17
2009
31. A. F. Oskin, S. Z. Pakulyak, A. V. Silantiev, “On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, Algebra i Analiz, 21:4 (2009),  196–240  mathnet  mathscinet  zmath; St. Petersburg Math. J., 21:4 (2010), 651–680  isi  scopus 18
2008
32. Sergey Khoroshkin, Stanislav Pakuliak, “Generating Series for Nested Bethe Vectors”, SIGMA, 4 (2008), 081, 23 pp.  mathnet  mathscinet  zmath  isi  scopus 6
2007
33. S. Z. Pakulyak, S. M. Khoroshkin, “Projection method and a universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_{N+1})$”, TMF, 150:2 (2007),  286–303  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 150:2 (2007), 244–258  isi  scopus 1
2005
34. S. Z. Pakuliak, S. M. Khoroshkin, “Weight Function for the Quantum Affine Algebra $U_{q}(\widehat{\frak{sl}}_3)$”, TMF, 145:1 (2005),  3–34  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 145:1 (2005), 1373–1399  isi 22
2003
35. S. Z. Pakulyak, S. M. Sergeev, “Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model”, TMF, 136:1 (2003),  30–51  mathnet  mathscinet  elib; Theoret. and Math. Phys., 136:1 (2003), 917–935  isi 4
2000
36. J. Ding, S. Z. Pakulyak, S. M. Khoroshkin, “Factorization of the universal $\mathcal R $-matrix for ${U_q(\widehat{sl}_2)} $”, TMF, 124:2 (2000),  179–214  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 124:2 (2000), 1007–1037  isi 12
1997
37. D. R. Lebedev, S. Z. Pakulyak, S. M. Khoroshkin, “Zamolodchikov–Faddeev algebras for Yangian doubles at level 1”, TMF, 110:1 (1997),  25–45  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 110:1 (1997), 18–34  isi
1995
38. S. Z. Pakulyak, “On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$”, TMF, 104:1 (1995),  64–77  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 104:1 (1995), 810–822  isi 1
39. P. I. Holod, S. Z. Pakulyak, “The dressing techniques for intermediate hierarchies”, TMF, 103:3 (1995),  422–436  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 103:3 (1995), 668–680  isi 1
1993
40. A. D. Mironov, S. Z. Pakulyak, “On the continuum limit of the conformal matrix models”, TMF, 95:2 (1993),  317–340  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 95:2 (1993), 604–625  isi 20

Presentations in Math-Net.Ru
1. Recent Advances in Algebraic Bethe Ansatz
S. Z. Pakuliak
International Conference «Quantum Integrability and Geometry» Dedicated to 60th Anniversaries of N. A. Slavnov and L. O. Chekhov
June 1, 2022 14:40   
2. Symmetries of the space of states in quantum integrable models
S. Z. Pakuliak
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
March 15, 2006

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025