|
|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
| 1. |
Rodion I. Gvozdev, “Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions”, J. Sib. Fed. Univ. Math. Phys., 17:6 (2024), 693–697 |
| 2. |
M. A. Vsemirnov, R. I. Gvozdev, Ya. N. Nuzhin, T. B. Shaipova, “On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
by Three Involutions Two of Which Commute. II”, Mat. Zametki, 115:3 (2024), 317–329 ; Math. Notes, 115:3 (2024), 289–300 |
4
|
|
2023 |
| 3. |
R. I. Gvozdev, “Generating sets of conjugate involutions of groups $PSL_{n}(9)$”, Algebra Logika, 62:4 (2023), 479–503 ; Algebra and Logic, 62:4 (2023), 319–338 |
| 4. |
R. I. Gvozdev, Ya. N. Nuzhin, “The minimal number of generating involutions whose product is $1$ for the groups $PSL_3(2^m)$ and $PSU_3(q^2)$”, Sibirsk. Mat. Zh., 64:6 (2023), 1160–1171 ; Siberian Math. J., 64:6 (2023), 1297–1306 |
|
2022 |
| 5. |
Rodion I. Gvozdev, Yakov N. Nuzhin, Tatyana B. Shaipova, “On generation of the groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute”, Bulletin of Irkutsk State University. Series Mathematics, 40 (2022), 49–62 |
2
|
|
| Organisations |
|
|