Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Naboko, Sergei Nikolaevich

Statistics Math-Net.Ru
Total publications: 38
Scientific articles: 37

Number of views:
This page:4302
Abstract pages:12337
Full texts:4733
References:1224

https://www.mathnet.ru/eng/person19649
List of publications on Google Scholar
https://zbmath.org/authors/ai:naboko.serguei-n
https://mathscinet.ams.org/mathscinet/MRAuthorID/202473

Publications in Math-Net.Ru Citations
2023
1. C. Fischbacher, S. N. Naboko, I. Wood, “Complete nonselfadjointness for Schrödinger operators on the semi-axis”, Algebra i Analiz, 35:1 (2023),  283–303  mathnet; St. Petersburg Math. J., 35:1 (2024), 217–232 1
2. S. N. Naboko, S. Simonov, “Estimates of Green matrix entries of selfadjoint unbounded block Jacobi matrices”, Algebra i Analiz, 35:1 (2023),  243–261  mathnet; St. Petersburg Math. J., 35:1 (2024), 185–199
3. M. Brown, M. Marletta, S. N. Naboko, I. Wood, “The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach”, Algebra i Analiz, 35:1 (2023),  33–79  mathnet; St. Petersburg Math. J., 35:1 (2024), 25–59
2021
4. S. N. Naboko, S. A. Simonov, “Titchmarsh–Weyl formula for the spectral density of a class of Jacobi matrices in the critical case”, Funktsional. Anal. i Prilozhen., 55:2 (2021),  21–43  mathnet  elib; Funct. Anal. Appl., 55:2 (2021), 94–112  isi  scopus 4
2019
5. K. D. Cherednichenko, Yu. Yu. Ershova, A. V. Kiselev, S. N. Naboko, “Unified approach to critical-contrast homogenisation with explicit links to time-dispersive media”, Tr. Mosk. Mat. Obs., 80:2 (2019),  295–342  mathnet  elib; Trans. Moscow Math. Soc., 80 (2019), 251–294  scopus 5
2016
6. I. Yu. Popov, P. A. Kurasov, S. N. Naboko, A. A. Kiselev, A. E. Ryzhkov, A. M. Yafyasov, G. P. Miroshnichenko, Yu. E. Karpeshina, V. I. Kruglov, T. F. Pankratova, A. I. Popov, “A distinguished mathematical physicist Boris S. Pavlov”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016),  782–788  mathnet  isi 6
2004
7. A. V. Kiselev, S. N. Naboko, “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators”, Funktsional. Anal. i Prilozhen., 38:3 (2004),  39–51  mathnet  mathscinet  zmath; Funct. Anal. Appl., 38:3 (2004), 192–201  isi  scopus 4
2002
8. S. N. Naboko, J. Janas, “Criteria for semiboundedness in a class of unbounded Jacobi operators”, Algebra i Analiz, 14:3 (2002),  158–168  mathnet  mathscinet  zmath; St. Petersburg Math. J., 14:4 (2003), 479–485 4
1999
9. Yu. A. Kuperin, S. N. Naboko, R. V. Romanov, “Spectral Analysis of the One-Speed Transport Operator and the Functional Model”, Funktsional. Anal. i Prilozhen., 33:3 (1999),  47–58  mathnet  mathscinet  zmath; Funct. Anal. Appl., 33:3 (1999), 199–207  isi 9
1996
10. S. N. Naboko, “Zygmund's Theorem and the Boundary Behavior of Operator $R$-functions”, Funktsional. Anal. i Prilozhen., 30:3 (1996),  82–84  mathnet  mathscinet  zmath; Funct. Anal. Appl., 30:3 (1996), 211–213  isi 3
1995
11. S. N. Naboko, A. B. Pushnitskii, “Point Spectrum on a Continuous Spectrum for Weakly Perturbed Stark Type Operators”, Funktsional. Anal. i Prilozhen., 29:4 (1995),  31–44  mathnet  mathscinet  zmath; Funct. Anal. Appl., 29:4 (1995), 248–257  isi 10
1992
12. S. N. Naboko, S. I. Yakovlev, “The discrete Schrödinger operator. A point spectrum lying in the continuous spectrum”, Algebra i Analiz, 4:3 (1992),  183–195  mathnet  mathscinet  zmath; St. Petersburg Math. J., 4:3 (1993), 559–568 11
13. S. N. Naboko, S. I. Yakovlev, “On the point spectrum of discrete Schrödinger operator”, Funktsional. Anal. i Prilozhen., 26:2 (1992),  85–88  mathnet  mathscinet  zmath; Funct. Anal. Appl., 26:2 (1992), 145–147  isi 11
1991
14. E. M. Dyn'kin, S. N. Naboko, S. I. Yakovlev, “A finiteness bound for the singular spectrum in a selfadjoint Friedrichs model”, Algebra i Analiz, 3:2 (1991),  77–90  mathnet  mathscinet  zmath; St. Petersburg Math. J., 3:2 (1992), 299–313 12
15. S. N. Naboko, “Structure of the singularities of operator functions with a positive imaginary part”, Funktsional. Anal. i Prilozhen., 25:4 (1991),  1–13  mathnet  mathscinet  zmath; Funct. Anal. Appl., 25:4 (1991), 243–253  isi 6
1990
16. S. N. Naboko, S. I. Yakovlev, “Conditions for the finiteness of the singular spectrum in the self-adjoint friedrichs model”, Funktsional. Anal. i Prilozhen., 24:4 (1990),  88–89  mathnet  mathscinet  zmath; Funct. Anal. Appl., 24:4 (1990), 338–340  isi 4
17. S. N. Naboko, “Estimates in operator classes for a difference of functions, from the pick class, of accretive operators”, Funktsional. Anal. i Prilozhen., 24:3 (1990),  26–35  mathnet  mathscinet  zmath; Funct. Anal. Appl., 24:3 (1990), 187–195  isi 4
1989
18. S. N. Naboko, “Nontangential boundary values of operator $R$-functions in a half-plane”, Algebra i Analiz, 1:5 (1989),  197–222  mathnet  mathscinet  zmath; Leningrad Math. J., 1:5 (1990), 1255–1278 5
1987
19. S. N. Naboko, “On the structure of roots of operator-valued functions with positive imaginary part in the classes $\sigma_p$”, Dokl. Akad. Nauk SSSR, 295:3 (1987),  538–541  mathnet  mathscinet; Dokl. Math., 36:1 (1988), 92–95 1
20. S. N. Naboko, “On the boundary values of analytic operator-valued functions with positive imaginary parts”, Zap. Nauchn. Sem. LOMI, 157 (1987),  55–69  mathnet  zmath 4
1986
21. V. F. Veselov, S. N. Naboko, “The determinant of the characteristic function and the singular spectrum of a nonselfadjoint operator”, Mat. Sb. (N.S.), 129(171):1 (1986),  20–39  mathnet  mathscinet  zmath; Math. USSR-Sb., 57:1 (1987), 21–41 17
22. S. N. Naboko, “Dense point spectra of Schrödinger and Dirac operators”, TMF, 68:1 (1986),  18–28  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 68:1 (1986), 646–653  isi 27
1985
23. V. F. Veselov, S. N. Naboko, “Determinant of the characteristic function of a non-self-adjoint operator”, Funktsional. Anal. i Prilozhen., 19:4 (1985),  80–81  mathnet  mathscinet  zmath; Funct. Anal. Appl., 19:4 (1985), 317–318  isi
1984
24. S. N. Naboko, “Schrödinger operators with a decreasing potential and dense point spectrum”, Dokl. Akad. Nauk SSSR, 276:6 (1984),  1312–1315  mathnet  mathscinet  zmath 1
25. S. N. Naboko, “Uniqueness theorems for operator-valued functions with positive imaginary part and the singular spectrum in the selfadjoint Friedrichs model”, Dokl. Akad. Nauk SSSR, 275:6 (1984),  1310–1313  mathnet  mathscinet  zmath 6
26. S. N. Naboko, “Conditions for similarity to unitary and self-adjoint operators”, Funktsional. Anal. i Prilozhen., 18:1 (1984),  16–27  mathnet  mathscinet  zmath; Funct. Anal. Appl., 18:1 (1984), 13–22  isi 50
1981
27. S. N. Naboko, “Singular spectrum of a non-self-adjoint operator”, Zap. Nauchn. Sem. LOMI, 113 (1981),  149–177  mathnet  mathscinet  zmath; J. Soviet Math., 22:6 (1983), 1793–1813 10
1980
28. S. N. Naboko, “Functional model of perturbation theory and its applications to scattering theory”, Trudy Mat. Inst. Steklov., 147 (1980),  86–114  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 147 (1981), 85–116 21
1978
29. S. N. Naboko, “On the separation of spectral subspaces of a nonselfadjoint operator”, Dokl. Akad. Nauk SSSR, 239:5 (1978),  1052–1055  mathnet  mathscinet  zmath
30. S. N. Naboko, “9.4. The similarity problem and the structure of the singular spectrum of a nondissipative operator”, Zap. Nauchn. Sem. LOMI, 81 (1978),  100–102  mathnet; J. Soviet Math., 26:5 (1984), 2155–2156
1977
31. S. N. Naboko, “On the spectral analysis of nonselfadjoint operators”, Dokl. Akad. Nauk SSSR, 232:1 (1977),  36–39  mathnet  mathscinet  zmath 2
32. S. N. Naboko, “Absolutely continuous spectrum of a nondissipative operator and a functional model. II”, Zap. Nauchn. Sem. LOMI, 73 (1977),  118–135  mathnet  mathscinet  zmath; J. Soviet Math., 34:6 (1986), 2090–2101 10
33. S. N. Naboko, “Wave operators for non-self-adjoint operators and the functional model”, Zap. Nauchn. Sem. LOMI, 69 (1977),  129–135  mathnet  mathscinet  zmath; J. Soviet Math., 10:1 (1978), 89–94 4
1976
34. S. N. Naboko, “Absolutely continuous spectrum of the nondissipative operator and the functional modell”, Zap. Nauchn. Sem. LOMI, 65 (1976),  90–102  mathnet  mathscinet  zmath; J. Soviet Math., 16:3 (1981), 1109–1117 14
1974
35. S. N. Naboko, “Analytic continuation to the- second sheet of the Predholm determinant of the Schrödinger operator”, Zap. Nauchn. Sem. LOMI, 47 (1974),  81–89  mathnet  mathscinet  zmath
36. S. N. Naboko, “On the non selfadjoint Friedrichs model”, Zap. Nauchn. Sem. LOMI, 39 (1974),  40–58  mathnet  mathscinet  zmath 5
1973
37. S. N. Naboko, “Estimates of the number of geodesics on a fundamental domain of the modular group”, Zap. Nauchn. Sem. LOMI, 37 (1973),  43–46  mathnet  mathscinet  zmath 1

2019
38. A. I. Aptekarev, A. M. Akhtyamov, O. V. Besov, A. A. Vladimirov, B. S. Kashin, K. A. Mirzoev, S. N. Naboko, R. O. Oinarov, I. V. Sadovnichaya, A. M. Savchuk, A. G. Sergeev, V. D. Stepanov, Ya. T. Sultanaev, D. V. Treschev, I. A. Sheipak, “Andrei Andreevich Shkalikov (on his seventieth birthday)”, Tr. Mosk. Mat. Obs., 80:2 (2019),  133–145  mathnet  elib; Trans. Moscow Math. Soc., 80 (2019), 113–122  scopus

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025