|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
C. Fischbacher, S. N. Naboko, I. Wood, “Complete nonselfadjointness for Schrödinger operators on the semi-axis”, Algebra i Analiz, 35:1 (2023), 283–303 ; St. Petersburg Math. J., 35:1 (2024), 217–232 |
1
|
2. |
S. N. Naboko, S. Simonov, “Estimates of Green matrix entries of selfadjoint unbounded block Jacobi matrices”, Algebra i Analiz, 35:1 (2023), 243–261 ; St. Petersburg Math. J., 35:1 (2024), 185–199 |
3. |
M. Brown, M. Marletta, S. N. Naboko, I. Wood, “The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach”, Algebra i Analiz, 35:1 (2023), 33–79 ; St. Petersburg Math. J., 35:1 (2024), 25–59 |
|
2021 |
4. |
S. N. Naboko, S. A. Simonov, “Titchmarsh–Weyl formula for the spectral density of a class of Jacobi matrices in the critical case”, Funktsional. Anal. i Prilozhen., 55:2 (2021), 21–43 ; Funct. Anal. Appl., 55:2 (2021), 94–112 |
4
|
|
2019 |
5. |
K. D. Cherednichenko, Yu. Yu. Ershova, A. V. Kiselev, S. N. Naboko, “Unified approach to critical-contrast homogenisation with explicit links to time-dispersive media”, Tr. Mosk. Mat. Obs., 80:2 (2019), 295–342 ; Trans. Moscow Math. Soc., 80 (2019), 251–294 |
5
|
|
2016 |
6. |
I. Yu. Popov, P. A. Kurasov, S. N. Naboko, A. A. Kiselev, A. E. Ryzhkov, A. M. Yafyasov, G. P. Miroshnichenko, Yu. E. Karpeshina, V. I. Kruglov, T. F. Pankratova, A. I. Popov, “A distinguished mathematical physicist Boris S. Pavlov”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 782–788 |
6
|
|
2004 |
7. |
A. V. Kiselev, S. N. Naboko, “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 39–51 ; Funct. Anal. Appl., 38:3 (2004), 192–201 |
4
|
|
2002 |
8. |
S. N. Naboko, J. Janas, “Criteria for semiboundedness in a class of unbounded Jacobi operators”, Algebra i Analiz, 14:3 (2002), 158–168 ; St. Petersburg Math. J., 14:4 (2003), 479–485 |
4
|
|
1999 |
9. |
Yu. A. Kuperin, S. N. Naboko, R. V. Romanov, “Spectral Analysis of the One-Speed Transport Operator and the Functional Model”, Funktsional. Anal. i Prilozhen., 33:3 (1999), 47–58 ; Funct. Anal. Appl., 33:3 (1999), 199–207 |
9
|
|
1996 |
10. |
S. N. Naboko, “Zygmund's Theorem and the Boundary Behavior of Operator $R$-functions”, Funktsional. Anal. i Prilozhen., 30:3 (1996), 82–84 ; Funct. Anal. Appl., 30:3 (1996), 211–213 |
3
|
|
1995 |
11. |
S. N. Naboko, A. B. Pushnitskii, “Point Spectrum on a Continuous Spectrum for Weakly Perturbed Stark Type Operators”, Funktsional. Anal. i Prilozhen., 29:4 (1995), 31–44 ; Funct. Anal. Appl., 29:4 (1995), 248–257 |
10
|
|
1992 |
12. |
S. N. Naboko, S. I. Yakovlev, “The discrete Schrödinger operator. A point spectrum lying in the continuous spectrum”, Algebra i Analiz, 4:3 (1992), 183–195 ; St. Petersburg Math. J., 4:3 (1993), 559–568 |
11
|
13. |
S. N. Naboko, S. I. Yakovlev, “On the point spectrum of discrete Schrödinger operator”, Funktsional. Anal. i Prilozhen., 26:2 (1992), 85–88 ; Funct. Anal. Appl., 26:2 (1992), 145–147 |
11
|
|
1991 |
14. |
E. M. Dyn'kin, S. N. Naboko, S. I. Yakovlev, “A finiteness bound for the singular spectrum in a selfadjoint Friedrichs model”, Algebra i Analiz, 3:2 (1991), 77–90 ; St. Petersburg Math. J., 3:2 (1992), 299–313 |
12
|
15. |
S. N. Naboko, “Structure of the singularities of operator functions with a positive imaginary part”, Funktsional. Anal. i Prilozhen., 25:4 (1991), 1–13 ; Funct. Anal. Appl., 25:4 (1991), 243–253 |
6
|
|
1990 |
16. |
S. N. Naboko, S. I. Yakovlev, “Conditions for the finiteness of the singular spectrum in the self-adjoint friedrichs model”, Funktsional. Anal. i Prilozhen., 24:4 (1990), 88–89 ; Funct. Anal. Appl., 24:4 (1990), 338–340 |
4
|
17. |
S. N. Naboko, “Estimates in operator classes for a difference of functions, from the pick class, of accretive operators”, Funktsional. Anal. i Prilozhen., 24:3 (1990), 26–35 ; Funct. Anal. Appl., 24:3 (1990), 187–195 |
4
|
|
1989 |
18. |
S. N. Naboko, “Nontangential boundary values of operator $R$-functions in a half-plane”, Algebra i Analiz, 1:5 (1989), 197–222 ; Leningrad Math. J., 1:5 (1990), 1255–1278 |
5
|
|
1987 |
19. |
S. N. Naboko, “On the structure of roots of operator-valued functions with positive imaginary part in the classes $\sigma_p$”, Dokl. Akad. Nauk SSSR, 295:3 (1987), 538–541 ; Dokl. Math., 36:1 (1988), 92–95 |
1
|
20. |
S. N. Naboko, “On the boundary values of analytic operator-valued functions with positive imaginary parts”, Zap. Nauchn. Sem. LOMI, 157 (1987), 55–69 |
4
|
|
1986 |
21. |
V. F. Veselov, S. N. Naboko, “The determinant of the characteristic function and the singular spectrum of a nonselfadjoint operator”, Mat. Sb. (N.S.), 129(171):1 (1986), 20–39 ; Math. USSR-Sb., 57:1 (1987), 21–41 |
17
|
22. |
S. N. Naboko, “Dense point spectra of Schrödinger and Dirac operators”, TMF, 68:1 (1986), 18–28 ; Theoret. and Math. Phys., 68:1 (1986), 646–653 |
27
|
|
1985 |
23. |
V. F. Veselov, S. N. Naboko, “Determinant of the characteristic function of a non-self-adjoint operator”, Funktsional. Anal. i Prilozhen., 19:4 (1985), 80–81 ; Funct. Anal. Appl., 19:4 (1985), 317–318 |
|
1984 |
24. |
S. N. Naboko, “Schrödinger operators with a decreasing potential and dense point spectrum”, Dokl. Akad. Nauk SSSR, 276:6 (1984), 1312–1315 |
1
|
25. |
S. N. Naboko, “Uniqueness theorems for operator-valued functions with positive
imaginary part and the singular spectrum in the selfadjoint Friedrichs
model”, Dokl. Akad. Nauk SSSR, 275:6 (1984), 1310–1313 |
6
|
26. |
S. N. Naboko, “Conditions for similarity to unitary and self-adjoint operators”, Funktsional. Anal. i Prilozhen., 18:1 (1984), 16–27 ; Funct. Anal. Appl., 18:1 (1984), 13–22 |
50
|
|
1981 |
27. |
S. N. Naboko, “Singular spectrum of a non-self-adjoint operator”, Zap. Nauchn. Sem. LOMI, 113 (1981), 149–177 ; J. Soviet Math., 22:6 (1983), 1793–1813 |
10
|
|
1980 |
28. |
S. N. Naboko, “Functional model of perturbation theory and its applications to scattering theory”, Trudy Mat. Inst. Steklov., 147 (1980), 86–114 ; Proc. Steklov Inst. Math., 147 (1981), 85–116 |
21
|
|
1978 |
29. |
S. N. Naboko, “On the separation of spectral subspaces of a nonselfadjoint operator”, Dokl. Akad. Nauk SSSR, 239:5 (1978), 1052–1055 |
30. |
S. N. Naboko, “9.4. The similarity problem and the structure of the singular spectrum of a nondissipative operator”, Zap. Nauchn. Sem. LOMI, 81 (1978), 100–102 ; J. Soviet Math., 26:5 (1984), 2155–2156 |
|
1977 |
31. |
S. N. Naboko, “On the spectral analysis of nonselfadjoint operators”, Dokl. Akad. Nauk SSSR, 232:1 (1977), 36–39 |
2
|
32. |
S. N. Naboko, “Absolutely continuous spectrum of a nondissipative operator and a functional model. II”, Zap. Nauchn. Sem. LOMI, 73 (1977), 118–135 ; J. Soviet Math., 34:6 (1986), 2090–2101 |
10
|
33. |
S. N. Naboko, “Wave operators for non-self-adjoint operators and the functional model”, Zap. Nauchn. Sem. LOMI, 69 (1977), 129–135 ; J. Soviet Math., 10:1 (1978), 89–94 |
4
|
|
1976 |
34. |
S. N. Naboko, “Absolutely continuous spectrum of the nondissipative operator and the functional modell”, Zap. Nauchn. Sem. LOMI, 65 (1976), 90–102 ; J. Soviet Math., 16:3 (1981), 1109–1117 |
14
|
|
1974 |
35. |
S. N. Naboko, “Analytic continuation to the- second sheet of the Predholm determinant of the Schrödinger operator”, Zap. Nauchn. Sem. LOMI, 47 (1974), 81–89 |
36. |
S. N. Naboko, “On the non selfadjoint Friedrichs model”, Zap. Nauchn. Sem. LOMI, 39 (1974), 40–58 |
5
|
|
1973 |
37. |
S. N. Naboko, “Estimates of the number of geodesics on a fundamental domain of the modular group”, Zap. Nauchn. Sem. LOMI, 37 (1973), 43–46 |
1
|
|
|
|
2019 |
38. |
A. I. Aptekarev, A. M. Akhtyamov, O. V. Besov, A. A. Vladimirov, B. S. Kashin, K. A. Mirzoev, S. N. Naboko, R. O. Oinarov, I. V. Sadovnichaya, A. M. Savchuk, A. G. Sergeev, V. D. Stepanov, Ya. T. Sultanaev, D. V. Treschev, I. A. Sheipak, “Andrei Andreevich Shkalikov (on his seventieth birthday)”, Tr. Mosk. Mat. Obs., 80:2 (2019), 133–145 ; Trans. Moscow Math. Soc., 80 (2019), 113–122 |
|
Organisations |
|
|
|
|