Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Filimoshina, Ekaterina Romanovna

Statistics
in Scopus: 1 (1)
Filimoshina, Ekaterina Romanovna
Birth date: 2.06.2001
Keywords: Clifford algebra, geometric algebra, Lie groups, spin groups, equivariant neural networks, geometric deep learning, mathematical physics
MSC: 15A66, 11E88, 68T01

Subject:

Clifford algebra, geometric algebra, neural networks

   
Main publications:
  1. E. Filimoshina, D. Shirokov, “On generalization of Lipschitz groups and spin groups”, Mathematical Methods in the Applied Sciences, 47:3 (2024), 1375–1400
  2. E. Filimoshina, D. Shirokov, “GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras”, Proceedings of the 42nd International Conference on Machine Learning (ICML, Vancouver, Canada, July 13 – 19, 2025), 2025

https://www.mathnet.ru/eng/person199929
https://scholar.google.com/citations?user=3JF-8Z0AAAAJ&hl=en
https://elibrary.ru/author_items.asp?spin=4186-5917
https://orcid.org/0000-0002-7771-5691
https://www.webofscience.com/wos/author/record/GSN-0815-2022
https://www.scopus.com/authid/detail.url?authorId=57704951700

List of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2025
1. E. R. Filimoshina, D. S. Shirokov, “Generalized Degenerate Clifford and Lipschitz Groups in Geometric Algebras”, Advances in Applied Clifford Algebras, 35 (2025), 29 , 35 pp., arXiv: 2505.07106  crossref
2. E. R. Filimoshina, D. S. Shirokov, “Generalized Degenerate Clifford and Lipschitz Groups”, Advances in Computer Graphics. CGI 2024. Lecture Notes in Computer Science (Geneva, Switzerland, July 1–5, 2024), 15340, eds. Magnenat-Thalmann, N., Kim, J., Sheng, B., Deng, Z., Thalmann, D., Li, P., Springer, Cham, 2025, 364–376  crossref 1
3. E. R. Filimoshina, D. S. Shirokov, “Equivariant Neural Networks with Geometric Algebras: A New Approach”, Proceedings of the International Joint Conference on Neural Networks (IEEE Proceedings) (Rome, Italy, June 30 – July 5, 2025), 2025 (to appear)
4. E. R. Filimoshina, D. S. Shirokov, “GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras”, Proceedings of the 42nd International Conference on Machine Learning (Vancouver, Canada, July 13–19, 2025), 2025 (to appear) https://openreview.net/forum?id=H0ySAzwu8k

   2024
5. E. R. Filimoshina, D. S. Shirokov, “A Note on Centralizers and Twisted Centralizers in Clifford Algebras”, Advances in Applied Clifford Algebras, 34 (2024), 50 , 22 pp., arXiv: 2404.15169  crossref 2
6. E. R. Filimoshina, D. S. Shirokov, “On some Lie groups in degenerate geometric algebras”, Advanced Computational Applications of Geometric Algebra. ICACGA 2022. Lecture Notes in Computer Science (Denver, CO, USA, October 2-5, 2022), 13771, eds. Silva, D.W., Hitzer, E., Hildenbrand, D., Springer, Cham, 2024, 186–198  crossref 3
7. E. R. Filimoshina, D. S. Shirokov, “On generalization of Lipschitz groups and spin groups”, Mathematical Methods in the Applied Sciences, 47 (2024), 1375–1400 , arXiv: 2205.06045  crossref  scopus 6

   2023
8. E. R. Filimoshina, D. S. Shirokov, “On Some Lie Groups in Degenerate Clifford Geometric Algebras”, Advances in Applied Clifford Algebras, 33 (2023), 44 , 31 pp., arXiv: 2301.06842  crossref 5

Organisations