01.01.05 (Probability theory and mathematical statistics)
E-mail:
Keywords:
age-dependent branching processes,
branching processes in random environment,
random permutations,
random trees,
local limit theorems.
Subject:
Branching processes, probabilistic problems of discrete mathematics.
Biography
Graduated from the faculty of Mechanics and Mathematics of the Moscow Lomonosov State University in 1974. A Phd student of the Steklov Mathematical Institute of the Academy of Sciences of the USSR from 1974 till 1977. From 1977 till now a researcher of the Steklov Mathematical Institute of the Academy of Scineces of the USSR and the Russian Academy of Sciences. Defended the PhD dissertation "Limit theorems for branching processes" in 1977 (the superwiser — B. A. Sevastyanov). Has a doctor degree in mathematics ("Critical branching processes with regularly varying generating functions" (defended in 1987). Vatutin has got in 1988 an award of the Academy of Sciences of the USSR for important results in mathematics.
In 2024 he got the A.A.Markov award of the Russian Academy of Sciences for the cycle of works «Limit theorems for branching processes in random environment».
A deputy Editor-in-Chief of the Journal " Theory of Probability and its Applications" (1994–present time),
A member of the Editorial Board of the journals "Markov processes and related fields" (2003–present time), "Discrete Mathematics and Applications" (2014–present time), "Stochastic processes and their Applications" (2002–2004).
Main publications:
Haccou P., Jagers P., Vatutin V.A., Branching processes in
biology: Evolution, Growth and Extinction., Cambridge Series in Adaptive Dynamics, 5, Cambridge University Press, Cambridge, 2005, 316 pp.
Vatutin V.A., “Sufficient condition for the regularity of Bellman-Harris branching processes”, Theory of Probability and its Applications, 31:1 (1987), 50–57
Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Annals of Probability, 33:2 (2005), 645–673
Vatutin V.A., Wachtel V., “Local probabilities for random walks
conditioned to stay positive”, Probabability Theory and Related Fields, 143:1-2 (2009), 177–217
Götz Kersting, Vladimir Vatutin, Discrete time branching processes in random environment, Wiley, New Jersey, USA, 2017, 306 pp.
Vladimir Vatutin, Elena Dyakonova, Yakubdjan Khusanbaev, Small deviations for critical Galton-Watson processes with infinite variance, 2025 , 30 pp., arXiv: 2505.10137
2.
V. A. Vatutin, E .E. Dyakonova, Reduced critical branching processes in non-favorable random environment, 2025 , 39 pp., arXiv: 2506.18063
3.
V. A. Vatutin, E. E. Dyakonova, “Reduced critical branching processes in non-favorable random environment”, Contemporary Mathematics and Its Applications: Proceedings of Sino-Russian Mathematical Meetings, Collected papers, Trudy Mat. Inst. Steklova, 330, Steklov Math. Inst., Moscow, 2025 (to appear)
4.
V. A. Vatutin, E. E. Dyakonova, Ya. M. Khusanbaev, “Small deviation probabilities for critical Galton-Watson process with infinite variance of the offspring number of particles”, Mat. Sb.
2025
5.
V. A. Vatutin, E . E. Dyakonova, “Reduced processes in non-favorable random environment”, Computer Data Analysis and Modelling: Stochastic and Data Science, Proceedings of the XIV International Conference (Minsk, September 24-27, 2025), eds. Yu.Kharin, A.M.Zubkov et al., Publishing Center of BSU, Minsk, 2025, 263-265 \href{https://conf.bsu.by/data/cdam_en/doc/CDAM
2024
6.
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Some functionals for random walks and critical branching processes in an extremely unfavourable random environment”, Sb. Math., 215:10 (2024), 1321–1350
7.
V. A. Vatutin, E. E. Dyakonova, “On the prospective minimum of the random walk conditioned to stay nonnegative”, Discrete Math. Appl., 34:6 (2024), 337–362
8.
V. Vatutin, E. Dyakonova, On the prospective minimum of the random walk conditioned to stay non-negative, 2024 , 34 pp., arXiv: 2409.02215
9.
Vladimir A. Vatutin, Elena E. Dyakonova, “Branching processes under nonstandard conditions”, Stoch. Qual. Control, 39:1 (2024), 59–68
10.
V. A. Vatutin, E. E. Dyakonova, “Letter to the Edinor”, Teor. Veroyatnost. i Primenen.
2023
11.
Charline Smadi, Vladimir Vatutin, “Reduced processes evolving in a mixed environment”, Stoch. Models, 39:1 (2023), 5–20
V. A. Vatutin, E. E. Dyakonova, “Population size of a critical branching process evolving in unfovarable environment”, Theory Probab. Appl., 68:3 (2023), 411–430
13.
C. Dong, E. Dyakonova, V. Vatutin, Random walks conditioned to stay non-negative and branching processes in non-favorable random environment, 2023 , 35 pp., arXiv: 2303.07776
14.
V. A. Vatutin, “On the closeness of distribution of some random variable to the equiprobable one”, Mat. Vopr. Kriptogr., 14:1 (2023), 5–14
15.
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533
16.
V. A. Vatutin, Yo.M.Xusanboev, TARMOQLANUVCHI JARAYONLAR VA ularning tatbiqlari, Vetvyaschiesya protsessy i ikh primeneniya (uzbekskii yazyk), eds. Sh. Q. Formanov, TIPOGRAFF, Tashkent, Uzbekistan, 2023 , 168 pp., kniga na uzbekskom yazyke
17.
C. Dong, E. Dyakonova, V. Vatutin, Some functionals for random walks and critical branching processes in extreme random environment, 2023 , 28 pp., arXiv: 2311.10445
2022
18.
V. A. Vatutin, C. Smadi, “Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family”, Proc. Steklov Inst. Math., 316 (2022), 336–355
19.
V. A. Vatutin, E. E. D'yakonova, “Atypical population size in a two-type decomposable branching process”, Theory Probab. Appl., 67:4 (2022), 516–534
2024
20.
V. A. Vatutin, E. E. Dyakonova, “Critical branching processes evolving in a unfavorable random environment”, Discrete Math. Appl., 34:3 (2024), 175–186
2022
21.
V. Vatutin, E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, 2022 , 15 pp., arXiv: 2209.13611
2021
22.
V. A. Vatutin, E. E. Dyakonova, V. A. Topchii, “Critical Galton-Watson branching processes with a countable set of types and infinite second moments”, Sb. Math., 212:1 (2021), 1–24
23.
Doudou Li, Vladimir Vatutin, Mei Zhang, “Subcritical branching processes in random environment with immigration stopped at zero”, J. Theor. Probability, 34:2 (2021), 874–896 , arXiv: 1906.09590
Charline Smadi, Vladimir Vatutin, “Critical branching processes in random environment with immigration: survival of a single family”, Extremes, 24 (2021), 433–460 , arXiv: 1911.00316
Ch. Smadi, V. A. Vatutin, Critical branching processes in random environment with immigration: the size of the only surviving family, 2021 , 26 pp., arXiv: 2109.13315
26.
V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063
2020
27.
V. A. Vatutin, E. E. D'yakonova, “The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment”, Math. Notes, 107:2 (2020), 189–200
28.
V. A. Vatutin, E. E. Dyakonova, “Branching processes in random environment with sibling dependence”, J. Math. Sci. (N.Y.), 246:4 (2020), 569–579 , arXiv: 1812.10304
Elena Dyakonova, Doudou Li, Vladimir Vatutin, Mei Zhang, “Branching processes in random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 , arXiv: 1905.03535
V. A. Vatutin, E. E. D'yakonova, “Subcritical Branching Processes in Random Environment with Immigration: Survival of a Single Family”, Theory Probab. Appl., 65:4 (2021), 527–544
31.
V. A. Vatutin, E. E. D'yakonova, “Properties of multitype subcritical branching processes in random environment”, Discrete Math. Appl., 31:5 (2021), 367–382
2020
32.
C. Dong, C. Smadi, V. A. Vatutin, “Critical branching processes in random environment and Cauchy domain of attraction”, ALEA, Lat. Am. J. Probab. Math. Stat., 17 (2020), 877–900 , arXiv: 1910.13190
33.
V. A. Vatutin, “Asymptotic properties of the number of inversions in a random forest”, Mat. Vopr. Kriptogr., 11:4 (2020), 7–22
2019
34.
W. Hong, M. Liu, V. A. Vatutin, “Limit theorems for supercritical MBPRE with linear fractional offspring distributions”, Markov Processes Relat. Fields, 25:1 (2019), 1–31 , arXiv: 1710.08724
2021
35.
V. A. Vatutin, E. E. D'yakonova, “Multitype weakly subcritical branching processes in random environment”, Discrete Math. Appl., 31:3 (2021), 207–222
2019
36.
V. A. Vatutin, E. E. D'yakonova, “The initial evolution stage of a weakly subcrtical branching process in a random environment”, Theory Probab. Appl., 64:4 (2019), 535–552
37.
V. A. Vatutin, “Asymptotic properties of the inversion number in colored trees”, Mat. Vopr. Kriptogr., 10:4 (2019), 9–24
2018
38.
V. A. Vatutin, E. E. D'yakonova, “Decomposable branching processes with two types of particles”, Discrete Math. Appl., 28:2 (2018), 119–130
2019
39.
M. Liu, V. A. Vatutin, “Reduced critical branching processes for small populations”, Theory Probab. Appl., 63:4 (2019), 648–656 , arXiv: 1801.03217
2018
40.
V. A. Vatutin, W. Hong, Ya. Ji, “Reduced critical Bellman–Harris branching processes for small populations”, Discrete Math. Appl., 28:5 (2018), 319–330
41.
V. A. Vatutin, “Uslovnaya predelnaya teorema dlya blizkikh k kriticheskim vetvyaschikhsya protsessov s finalnym tipom chastits”, Matematicheskie voprosy kriptografii, 9:4 (2018), 53–72
42.
Vladimir Vatutin, Vitali Wachtel, “Multi-type subcritical branching processes in a random environment”, Adv. in Appl. Probab., 50:A (2018), 281–289 , arXiv: 1711.07453
Vincent Bansaye, Vladimir Vatutin, “On the survival probability for a class of subcritical branching processes in random environment”, Bernoulli, 23:1 (2017), 58–88 , arXiv: 1307.3963
V. A. Vatutin, “A Conditional Functional Limit Theorem for Decomposable Branching Processes with Two Types of Particles”, Math. Notes, 101:5 (2017), 778–789
45.
Vladimir Vatutin, Elena Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 , arXiv: 1603.03199
V. A. Vatutin, E. E. D'yakonova, “Multitype branching processes in random environment: survival probability for the critical case”, Theory Probab. Appl., 62:4 (2018), 506–521
Valentin Topchii, Vladimir Vatutin, “Moments for multitype critical Bellman-Harris processes with long-living particles”, 39-th conference on Stochastic Processes and Their Applications (Moskva, 23–27 iyulya 2017 g.), Moskva, 2017, 116http://www.spa2017.org/images/upload_slides/Book-of-abstracts.pdf
49.
V. A. Vatutin, V. A. Topchii, “Moments of multitype critical Bellman–Harris processes in which tails of life-length distributions of particles have different orders”, Sib. Èlektron. Mat. Izv., 14 (2017), 1248–1264
2016
50.
C. Smadi, V. A. Vatutin, “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Processes Relat. Fields, 22:2 (2016), 311–358 , arXiv: 1508.06653
51.
V. A. Vatutin, E. E. Dyakonova, How many families survive for a long time?, 2016 , 23 pp., arXiv: 1608.08062
52.
Vladimir Vatutin, “Subcritical Branching Processes in Random Environment”, Workshop on Branching Processes and their Applications, WBPA 2015 (Badajoz (Spain), 6–11 April, 2015), Lecture Notes in Stat., 219, eds. I. M. del Puerto et al., 2016, 97–115
V. A. Vatutin, E. E. D'yakonova, “How many families survive for a long time?”, Theory Probab. Appl., 61:4 (2017), 692–711
2015
54.
V. Vatutin, A. Iksanov, V. Topchii, “A two-type Bellman–Harris process initiated by a large number of particles”, Acta Appl. Math., 138:1 (2015), 279–312 , arXiv: 1311.1060
Vladimir Vatutin, Quansheng Liu, “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Probab., 52:3 (2015), 877–893 , arXiv: 1403.0746
V. A. Vatutin, “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119
2015
57.
V. A. Topchii, V. A. Vatutin, A. M. Iksanov, “Extinction of a two-type Bellman-Harris process generated by a large number of particles”, XVI-th International Summer Conference on Probability and Statistics, Seminar on Statistical Data Analysis, Workshop on Branching processes and Applications (Pomorie, Bulgaria, 21–29 June 2014), Pliska Stud. Math. Bulgar., 24, 2015, 89–98
58.
V. A. Vatutin, E. E. D'yakonova, “Decomposable Branching Processes with a Fixed Extinction Moment”, Proc. Steklov Inst. Math., 290 (2015), 103–124
2016
59.
Vladimir A. Vatutin, Elena E. Dyakonova, “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 , arXiv: 1509.00759
2014
60.
V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127
V. A. Vatutin, A. Iksanov, A. V. Marynych, “Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli”, Theory Probab. Appl., 59:1 (2015), 87–113
2014
62.
V. Vatutin, “Macroscopic and microscopic sutructures of the family tree for a critical decomposable branching process”, Abstracts of the Intrenational Congress of Mathematicians (Seoul, Korea, August 13–21, 2014), Abstracts. Short Communications. Posters Sessions, Seoul ICM 2014, Organizing Committee, Seoul, Korea, 2014, 431
63.
D. Denisov, V. Vatutin, V. Wachtel, “Local probabilities for random walks with negative drift conditioned to stay nonnegative”, Electronic Journal of Probability, 19 (2014), 88 , 17 pp.
V. Bansaye, V. Vatutin, “Random walk with heavy tail and negative drift conditioned by its minimum and final values”, Markov Processes and Related Fields, 20:4 (2014), 633–652 , arXiv: 1312.3306
2015
65.
V. A. Vatutin, “The structure of decomposable reduced branching processes. I. Finitedimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662
2014
66.
Vladimir Vatutin, Macroscopic and microscopic structures of the family tree for the decomposable critical branching processes, 2014 , 37 pp., arXiv: 1402.6819v1
2013
67.
S. Sagitov, B. Mehlig B. P. Jagers, V. Vatutin, “Evolutionary branching in a stochastic population model with discrete mutational steps”, Theoretical Population Biology, 83 (2013), 145–154
V. A. Vatutin, V. A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Proc. Steklov Inst. Math., 282 (2013), 243–272
69.
V. A. Vatutin, E. E. D'yakonova, S. Sagitov, “Evolution of Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242
2014
70.
V. A. Vatutin, V. A. Topchii, “A Key Renewal Theorem for Heavy Tail Distributions with $\beta\in(0,0.5]$”, Theory Probab. Appl., 58:2 (2014), 333–342
2013
71.
A. Iksanov, A. Marynych, V. Vatutin, Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve, 2013 , 26 pp., arXiv: 1304.4469
72.
V. Vatutin, E. E. Dyakonova, P. Jagers, S. Sagitov, “Decomposable branching processes in a Markovian random environment”, Abstracts of communications of the Russian-Chinese Seminar on the asymptotic methods in probability theory and mathematical statistics (St. Petersburg, 10–14 June, 2013), St. Petersburg State University, St. Petersburg, 2013, 36
73.
Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environments”, Proceedings 59-th ISI World Statistics Congress, 25–30 August 2013, Hong Kong (Hong Kong, 25–30 August 2013), International Statistical Institute, The Hague, The Netherlands, 2013, 1744-1749http://2013.isiproceedings.org/Files/STS033-P3-S.pdf
2012
74.
V. A. Vatutin, “Total Population Size in Critical Branching Processes in a Random Environment”, Math. Notes, 91:1 (2012), 12–21
75.
V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732
V. Vatutin, X Zheng, “Subcritical branching processes in a random environment without the Cramer condition”, Stochastic Process. Appl., 122:7 (2012), 2594-2609
V. A. Vatutin, Q. Liu, “Critical branching process with two types of particles evolving in asynchronous random environments”, Theory Probab. Appl., 57:2 (2013), 279–305
2012
78.
V. Vatutin, V. Wachtel, “Gnedenko-Stone local limit theorems for random walks conditioned to stay positive”, Modern stochastics: Theory and Applications III (Kyiv, Ukraine, September 10–14, 2012), Conference materials, Kievskii universitet, Kiev, 2012, 45http://probability.univ.kiev.ua/msta3conf/datas/users/msta_main.pdf
79.
Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environment”, 8-the World Congress in Probability and Statistics (Istanbul, Turkey, July 09–14, 2012), Programm and Abstracts, Bernoulli Society, 2012, 182–183http://www.worldcong2012.org/ContributedTalks.pdf
80.
V. A. Vatutin, V. A. Topchii, “Dvukhtipnye protsessy Bellmana-Kharrisa, startuyuschie s bolshogo chisla chastits”, Mezhdunarodnaya konferentsiya «Teoriya veroyatnostei i ee prilozheniya» (Moskva, 26–30 iyunya 2012 g.), Tezisy dokladov, eds. A. N. Shiryaev, A. V. Lebedev, LENAND, Moskva, 2012, 24–25
81.
V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285 , 24 pp.
V. A. Vatutin, “Multitype branching processes with immigration in random environment, and polling systems”, Siberian Advances in Mathematics, 21:1 (2011), 42–72
2012
83.
Y. Hu, V. A. Topchii, V. A. Vatutin, “Branching Random Walk in $\mathbf Z^4$ with Branching at the Origin Only”, Theory Probab. Appl., 56:2 (2012), 193–212
2011
84.
F. C. Klebaner, S. Sagitov, V. A. Vatutin, P. Haccou, P. Jagers, “Stochasticity in the adaptive dynamics of evolution: the bare bones”, J. Biol. Dyn., 5:2 (2011), 147–162
V. A. Vatutin, V. A. Topchiǐ, “Catalytic branching random walks in $\mathbb Z^d$ with branching at the origin”, Siberian Adv. Math., 23:2 (2013), 125–153
2010
86.
V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177
2011
87.
V. A. Vatutin, “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660
2010
88.
C. Böinghoff, E. E. Dyakonova, G. Kersting, V. A. Vatutin, “Branching processes in random environment which extinct at a given moment”, Markov Process. Related Fields, 16:2 (2010), 329–350
89.
S. Sagitov, P. Jagers, V. Vatutin, “Coalescent approximation for structured populations in a stationary random environment.”, Theoretical Population Biology, 78:3 (2010), 192–199
V. Vatutin, “A refinement of limit theorems for the critical branching processes in random environment”, Workshop on Branching Processes and their Applications, Lect. Notes Stat. Proc., 197, Part 1, Springer, Berlin, 2010, 3–19
V. A. Vatutin, “Sudden death versus slow extinction for branching processes in random environment”, Proceedings of the 33th SPA conference, Berlin, 2009, 43
93.
V. A. Vatutin, Branching Bellman-Harris processes, Lekts. Kursy NOC, 12, Steklov Math. Inst., RAS, Moscow, 2009 , 112 pp.
2010
94.
V. A. Vatutin, V. I. Vakhtel', “Sudden extinction of the critical branching process in random environment”, Theory Probab. Appl., 54:3 (2010), 466–484
2008
95.
V. A. Vatutin, A. E. Kyprianou, “Branching processes in random environment die slowly”, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 375–395
96.
V. A. Vatutin, Branching process and their application, Lekts. Kursy NOC, 8, Steklov Math. Inst., RAS, Moscow, 2008 , 108 pp.
2009
97.
V. A. Vatutin, E. E. D'yakonova, “Waves in Reduced Branching Processes in a Random Environment”, Theory Probab. Appl., 53:4 (2009), 679–695
2007
98.
P. Haccou, P. Jagers, V. A. Vatutin, Branching processes: variation, growth, and extinction of populations, Camb. Stud. Adapt. Dyn., Cambridge Univ. Press, Cambridge, 2007 , xii+316 pp.
99.
V. Vatutin, J. Xiong, “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 997–1012
V. A. Vatutin, V. I. Vakhtel', K. Fleischmann, “Critical Galton–Watson process: The maximum of total progenies within a large window”, Theory Probab. Appl., 52:3 (2008), 470–492
101.
V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302
2006
102.
K. A. Borovkov, V. A. Vatutin, “On the asymptotic behaviour of random recursive trees in random environments”, Adv. in Appl. Probab., 38:4 (2006), 1047–1070
V. A. Vatutin, E. E. D'yakonova, “Branching processes in random environment and “bottlenecks” in evolution of populations”, Theory Probab. Appl., 51:1 (2007), 189–210
2005
104.
K. Fleischmann, V. A. Vatutin, “Multi-scale clustering for a non-Markovian spatial branching process”, J. Theoret. Probab., 18:4 (2005), 719–755
105.
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
V. Topchii, V. Vatutin, “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 387–395
108.
V. Vatutin, E. Dyakonova, “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 375–385
109.
E. E. Dyakonova, J. Geiger, V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306
2005
110.
V. A. Vatutin, V. A. Topchii, “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518
111.
V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309
2004
112.
V. A. Vatutin, V. A. Topchiĭ, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 (2005)
2003
113.
V. Topchii, V. Vatutin, “Individuals at the origin in the critical catalytic branching random walk”, Discrete random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 325–332
114.
J. Geiger, G. Kersting, V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 39:4 (2003), 593–620
V. A. Vatutin, “Limit theorem for an intermediate subcritical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 481–492
116.
V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336
2003
117.
P. Haccou, and V. Vatutin, “Establishment success and extinction risk in autocorrelated environments”, Theoretical Population Biology, 64:3 (2003), 303–314
V. A. Vatutin, G. I. Ivchenko, Yu. I. Medvedev, V. P. Chistyakov, Teoriya veroyatnostei i matematicheskaya statistika v zadachakh, 2-e izd., Drofa, Moskva, 2003 , 328 pp.
2002
119.
V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes and some queueing systems”, J. Math. Sci. (New York), 111:6 (2002), 3901–3911
V. Vatutin, E. Dyakonova, “Reduced branching processes in random environment”, Mathematics and computer science, II (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 455–467
121.
U. Rösler, V. Topchii, V. Vatutin, “Convergence rate for stable weighted branching processes”, Mathematics and computer science (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 441–453
122.
V. A. Vatutin, U. Rösler, V. A. Topchii, “The Rate of Convergence for Weighted Branching Processes”, Siberian Adv. Math., 12:4 (2002), 57–82
2003
123.
A. Wakolbinger, V. A. Vatutin, K. Fleischmann, “Branching systems with long-living particles at the critical dimension”, Theory Probab. Appl., 47:3 (2003), 429–454
124.
V. A. Vatutin, “Reduced branching processes in random environment: the critical case”, Theory Probab. Appl., 47:1 (2003), 99–113
2001
125.
V. A. Vatutin, E. E. Dyakonova, “The survival probability of a critical multitype Galton-Watson branching process”, J. Math. Sci. (New York), 106:1 (2001), 2752–2759
K. Fleischmann, V. Vatutin A., “An integral test for a critical multitype spatially homogeneous branching particle process and a related reaction-diffusion system”, Probab. Theory Related Fields, 116:4 (2000), 545–572
U. Rösler, V. A. Topchii, V. A. Vatutin, “Convergence conditions for weighted branching processes”, Discrete Math. Appl., 10:1 (2000), 5–21
2001
130.
V. A. Vatutin, K. Fleischmann, “Deviations from typical type proportions in critical multitype Galton–Watson processes”, Theory Probab. Appl., 45:1 (2001), 23–40
2000
131.
V. A. Vatutin, “On the embeddability probability of a random hypergraph with coloured edges into a bipartite graph”, Tr. Diskr. Mat., 3, Fizmatlit, Moscow, 2000, 29–36
1999
132.
K. Fleischmann, V. Vatutin A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. in Appl. Probab., 31:1 (1999), 88–111
A. Wakolbinger, V. A. Vatutin, “Spatial branching populations with long individual lifetimes”, Theory Probab. Appl., 43:4 (1999), 620–632
1997
134.
M. Drmota, V. Vatutin, “Limiting distributions in branching processes with two types of particles”, Classical and modern branching processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 84, Springer, New York, 1997, 89–110
V. A. Vatutin, E. E. D'yakonova, “Critical branching processes in random environment: the probability of extinction at a given moment”, Discrete Math. Appl., 7:5 (1997), 469–496
1998
137.
V. A. Vatutin, V. A. Topchii, “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Theory Probab. Appl., 42:1 (1998), 17–27
1996
138.
K. A. Borovkov, V. A. Vatutin, “On distribution tails and expectations of maxima in critical branching processes”, J. Appl. Probab., 33:3 (1996), 614–622
V. A. Vatutin, V. G. Mikhailov, “On the number of readings of random nonequiprobable files under stable sorting”, Discrete Math. Appl., 6:3 (1996), 207–223
140.
V. A. Vatutin, “The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent”, Discrete Math. Appl., 6:1 (1996), 41–52
1997
141.
V. A. Vatutin, V. G. Mikhailov, “Asymptotic properties of matrices related to mappings of partitions”, Theory Probab. Appl., 41:2 (1997), 318–325
1996
142.
V. A. Vatutin, “On the explosiveness of nonhomogeneous age-dependent branching processes”, Theory Probab. Math. Statist., 1996, no. 52, 39–42
1995
143.
V. A. Vatutin, V. G. Mikhailov, “Some estimates for the distribution of the height of a tree for digital searching”, Discrete Math. Appl., 5:4 (1995), 289–300
144.
V. G. Mikhailov, V. A. Vatutin, “Statistical estimation of the entropy of discrete random variables with a large number of outcomes”, Russian Math. Surveys, 50:5 (1995), 963–976
145.
V. A. Vatutin, “On the maximum of a simple random walk”, Theory Probab. Appl., 40:2 (1995), 398–402
1994
146.
V. A. Vatutin, “On the height of the trunk of random rooted trees”, Discrete Math. Appl., 4:4 (1994), 351–360
147.
V. A. Vatutin, “Limit theorems for the number of ascending segments in random permutations generated by sorting algorithms”, Discrete Math. Appl., 4:1 (1994), 31–44
148.
V. A. Vatutin, “Branching processes with final types of particles and random trees”, Theory Probab. Appl., 39:4 (1994), 628–641
1993
149.
V. A. Vatutin, “The total number of particles in a reduced Bellman–Harris branching process”, Theory Probab. Appl., 38:3 (1993), 567–571
150.
V. A. Vatutin, “The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height”, Theory Probab. Appl., 38:2 (1993), 330–341
151.
V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485
V. A. Vatutin, “The limit theorem for Bellman–Harris process with final types”, Proc. Steklov Inst. Math., 200 (1993), 83–92
1991
153.
V. A. Vatutin, S. M. Sagitov, “A critical branching process: the remote past given a favorable present”, Theory Probab. Appl., 36:1 (1991), 86–98
154.
V. A. Vatutin, N. M. Yanev, “A multidimensional critical Galton–Watson branching process with final types”, Discrete Math. Appl., 1:3 (1991), 321–333
1989
155.
V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Tupes. II”, Theory Probab. Appl., 34:2 (1989), 216–227
1988
156.
V. A. Vatutin, S. M. Sagitov, “Critical decomposable Bellman–Harris processes with two types of particles”, Math. Notes, 43:2 (1988), 157–161
157.
V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Types. I”, Theory Probab. Appl., 33:3 (1988), 460–472
1989
158.
V. A. Vatutin, “Asymptotic properties of Bellman–Harris critical branching processes starting with a large number of particles”, Stability problems for stochastic models, J. Soviet Math., 47:5 (1989), 2673–2681
1986
159.
N. M. Yanev, V. A. Vatutin, K. V. Mitov, “Critical branching migration processes with an absorbing barrier at zero”, Mathematics and mathematical education (Sl'nchev Bryag, 1986), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 511–517
160.
V. A. Vatutin, S. M. Sagitov, “A decomposable critical Bellman-Harris branching process with two types of particles”, Dokl. AN SSSR, 291:5 (1986), 1040–1043
161.
V. A. Vatutin, “Critical Bellman–Harris branching processes starting with a large number of particles”, Math. Notes, 40:4 (1986), 803–811
1988
162.
V. A. Vatutin, S. M. Sagitov, “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177 (1988), 1–19
1987
163.
V. A. Vatutin, “Critical branching Bellman–Harris process of final type”, Theory Probab. Appl., 31:3 (1987), 428–438
164.
V. A. Vatutin, “Sufficient regularity conditions for Bellman–Harris branching processes”, Theory Probab. Appl., 31:1 (1987), 50–57
165.
V. A. Vatutin, A. M. Zubkov, “Branching processes. I”, J. Soviet Math., 39:1 (1987), 2431–2475
1985
166.
V. A. Vatutin, T. M. Televinova, V. P. Chistyakov, Veroyatnostnye metody v fizicheskikh issledovaniyakh, Nauka, Moskva, 1985 , 208 pp.
1984
167.
K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Critical Galton–Watson processes with decreasing immigration depending on the state of the process”, Serdica, 10:4 (1984), 412–424
168.
K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Continuous-time branching processes with decreasing state-dependent immigration”, Adv. in Appl. Probab., 16:4 (1984), 697–714
V. A. Vatutin, “Branching processes with infinite variance”, Fourth international summer school on probability theory and mathematical statistics (Varna, 1982), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 9–38
170.
V. A. Vatutin, V. G. Mihaǐlov, “Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles”, Theory Probab. Appl., 27:4 (1983), 734–743
171.
V. A. Vatutin, “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math., 158 (1983), 9–31
1982
172.
V. A. Vatutin, “On a class of limit theorems for a critical Bellman–Harris branching process”, Theory Probab. Appl., 26:4 (1982), 806–812
1981
173.
V. A. Vatutin, “On a class of the critical multitype Bellman–Harris branching processes”, Theory Probab. Appl., 25:4 (1981), 760–771
1979
174.
V. A. Vatutin, “Distance to the nearest common ancestor in bellman-harris branching processes”, Math. Notes, 25:5 (1979), 378–382
1980
175.
V. A. Vatutin, “A new limit theorem for the critical Bellman–Harris branching process”, Math. USSR-Sb., 37:3 (1980), 411–423
176.
V. A. Vatutin, “Discrete limit distributions of the number of particles in a multitype age-dependent branching processes”, Theory Probab. Appl., 24:3 (1980), 509–520
1979
177.
V. A. Vatutin, “Limit theorem for a critical multitype Bellman–Harris branching process with infinite second moments”, Theory Probab. Appl., 23:4 (1979), 776–788
1977
178.
V. A. Vatutin, “A conditional limit theorem for a critical Branching process with immigration”, Math. Notes, 21:5 (1977), 405–411
179.
V. A. Vatutin, “Limit theorems for critical Markov branching processes with several types of particles and infinite second moments”, Math. USSR-Sb., 32:2 (1977), 215–225
180.
V. A. Vatutin, “Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles”, Math. USSR-Sb., 31:1 (1977), 95–107
1978
181.
V. A. Vatutin, “A critical Galton–Watson branching process with emigration”, Theory Probab. Appl., 22:3 (1978), 465–481
1977
182.
V. A. Vatutin, “Discrete distributions of the number of particles in critical Bellman–Harris branching processes”, Theory Probab. Appl., 22:1 (1977), 146–152
183.
V. A. Vatutin, “Asymptotic behaviour of the non-extinction probability for a critical branching process”, Theory Probab. Appl., 22:1 (1977), 140–146
1976
184.
V. A. Vatutin, “Uslovie regulyarnosti vetvyaschegosya protsessa Bellmana–Kharrisa”, Dokl. AN SSSR, 230:1 (1976), 15–18
V. A. Vatutin, “A limit theorem for a critical age-dependent branching process with infinite variance”, Theory Probab. Appl., 21:4 (1977), 839–842
186.
V. A. Vatutin, “Critical multitype age-dependent branching process with immigration”, Theory Probab. Appl., 21:2 (1977), 435–442
1974
187.
V. A. Vatutin, “The asymptotic probability of the first degeneration for branching processes with immigration”, Theory Probab. Appl., 19:1 (1974), 25–34
Биография Б.А.Севастьянова V. A. Vatutin Branching processes and discrete mathematics, a conference dedicated to the 100th
anniversary of Sevastyanov's birth October 3, 2023 10:10
8.
Ветвящиеся процессы — 2 V. A. Vatutin Summer School “Contemporary Mathematics” Named After Vitaly Arnold, 2023 July 21, 2023 12:45
9.
Ветвящиеся процессы V. A. Vatutin Summer School “Contemporary Mathematics” Named After Vitaly Arnold, 2023 July 19, 2023 17:15
Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, ed. V. A. Vatutin, A. G. Sergeev, 2013, 335 с. http://mi.mathnet.ru/book1485