|
|
|
Publications in Math-Net.Ru |
Citations |
|
2008 |
| 1. |
Ya. A. Butko, “Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold”, Mat. Zametki, 83:3 (2008), 333–349 ; Math. Notes, 83:3 (2008), 301–316 |
24
|
|
2006 |
| 2. |
Ya. A. Butko, “Function integrals corresponding to a solution of the Cauchy–Dirichlet problem for the heat equation in a domain of a Riemannian manifold”, Fundam. Prikl. Mat., 12:6 (2006), 3–15 ; J. Math. Sci., 151:1 (2008), 2629–2638 |
7
|
| 3. |
Ya. A. Butko, “Functional Integrals for the Schrodinger Equation on Compact Riemannian Manifolds”, Mat. Zametki, 79:2 (2006), 194–200 ; Math. Notes, 79:2 (2006), 178–184 |
5
|
| 4. |
Ya. A. Butko, “The Feynman-Kac-Ito formula for an infinite-dimensional Schrödinger equation with scalar and vector potentials”, Nelin. Dinam., 2:1 (2006), 75–87 |
2
|
|
| Presentations in Math-Net.Ru |
| 1. |
Physical origin of fractional Brownian motion and related Gaussian models of anomalous diffusion Ya. A. Kinderknecht
International scientific conference “Infinite-dimensional analysis and mathematical physics” (IDAMPh 2025) January 28, 2025 16:30
|
| 2. |
Subordination principle, stochastic solutions and Feynman-Kac formulae for generalized time fractional evolution equations Ya. A. Kinderknecht
Seminar on Analysis, Differential Equations and Mathematical Physics November 30, 2023 18:00
|
| 3. |
Subordination principle and Feynman-Kac formulae for generalized time fractional evolution equations Ya. A. Kinderknecht
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov July 10, 2023 15:35
|
| 4. |
Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations Ya. A. Butko
One-Parameter Semigroups of Operators (OPSO) 2022 February 17, 2022 17:10
|
| 5. |
Feynman-Kac formulae for generalized time-fractional evolution equations Ya. Kinderknecht
Mathematical Physics, Dynamical Systems and Infinite-Dimensional
Analysis – 2021 July 7, 2021 15:30
|
| 6. |
Approximation of subordinate semigroups via the Chernoff theorem Ya. A. Butko
Infinite dimensional analysis and mathematical physics March 22, 2021 18:30
|
| 7. |
Stochastic representations for solutions of a class of integro-differential evolution equations Yana Kinderknecht (Butko)
Workshop "New Trends in Mathematical Physics" December 9, 2020 17:25
|
| 8. |
Approximation of operator semigroups generated by Markov processes with the help of the Chernoff theorem Ya. A. Butko
Seminar on Probability Theory and Mathematical Statistics March 6, 2020 18:00
|
|
|