Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kazantsev, Vladimir Petrovich

E-mail:

https://www.mathnet.ru/eng/person20885
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/333534

Publications in Math-Net.Ru Citations
2025
1. V. P. Kazantsev, O. A. Zolotov, O. P. Zolotova, V. E. Zalizniak, “Interaction energy of point electric multipoles”, UFN, 195:8 (2025),  897–904  mathnet; Phys. Usp., 68:8 (2025), 843–849  scopus
2023
2. Vladimir P. Kazantsev, Oleg A. Zolotov, Irina A. Baranova, Viktor E. Zalizniak, “Effective dielectric permeability of a medium with periodic inclusions”, J. Sib. Fed. Univ. Math. Phys., 16:1 (2023),  76–86  mathnet
2011
3. Vladimir P. Kazantsev, Evgeny N. Shlyahtich, “Examples of the solution of the electrostatic problem about a conductive ellipse in applied electric fields”, J. Sib. Fed. Univ. Math. Phys., 4:1 (2011),  85–101  mathnet
2009
4. Vladimir P. Kazantsev, Evgeny N. Shlyahtich, “Characteristic Multipoles of Ellipse and a Solution of the Electrostatic Problem for a Conductive Ellipse in Applied Electric Fields”, J. Sib. Fed. Univ. Math. Phys., 2:4 (2009),  410–425  mathnet 1
2006
5. V. P. Kazantsev, O. A. Zolotov, M. V. Dolgopolova, “The interaction energy of electric multipoles in a plane and a point-multipole approximation for the electric field of conductors”, UFN, 176:5 (2006),  537–542  mathnet; Phys. Usp., 49:5 (2006), 517–522  isi  scopus 4
2002
6. V. P. Kazantsev, “An example illustrating the potentiality and peculiarities of a variational approach to electrostatic problems”, UFN, 172:3 (2002),  357–362  mathnet; Phys. Usp., 45:3 (2002), 325–330  isi 2
1999
7. V. P. Kazantsev, “Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory”, TMF, 119:3 (1999),  441–454  mathnet  zmath; Theoret. and Math. Phys., 119:3 (1999), 750–760  isi 7

Organisations