|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
A. O. Sivakova, P. A. Lazarev, O. D. Boyarchenko, A. E. Sytschev, G. A. Sychev, “Special features of Al$_9$Mn$_3$Si $\gamma$-phase formation during high-temperature synthesis in Al–Mn–Si : combustion, structurization, and phase formation”, Fizika Goreniya i Vzryva, 61:1 (2025), 36–43 ; Combustion, Explosion and Shock Waves, 61:1 (2025), 35–44 |
|
2023 |
| 2. |
P. A. Lazarev, M. L. Busurina, A. E. Sytschev, “Self-propagiating high-temperature synthesis in $\mathrm{Ti}$–$\mathrm{Al}$–$\mathrm{Mn}$”, Fizika Goreniya i Vzryva, 59:1 (2023), 85–91 ; Combustion, Explosion and Shock Waves, 59:1 (2023), 78–84 |
2
|
|
2022 |
| 3. |
A. S. Skryabin, A. E. Sytschev, “On the plasma-chemical processing of finely dispersed silicon monoxide particles in argon-hydrogen plasma flows”, TVT, 60:3 (2022), 339–342 ; High Temperature, 60:3 (2022), 300–303 |
|
2021 |
| 4. |
A. V. Shcherbakov, A. E. Sytschev, “Synthesis of a $\mathrm{Ni}$–$\mathrm{Al}$–$\mathrm{C}$ composite with multilayer carbon nanostructures by an electrothermal explosion under pressure”, Fizika Goreniya i Vzryva, 57:2 (2021), 75–81 ; Combustion, Explosion and Shock Waves, 57:2 (2021), 196–202 |
1
|
| 5. |
S. G. Vadchenko, M. L. Busurina, E. V. Suvorova, N. I. Mukhina, I. D. Kovalev, A. E. Sytschev, “Self-propaging high-temperature synthesis of mechanically activated mixtures in $\mathrm{Co}$–$\mathrm{Ti}$–$\mathrm{Al}$”, Fizika Goreniya i Vzryva, 57:1 (2021), 58–64 ; Combustion, Explosion and Shock Waves, 57:1 (2021), 53–59 |
4
|
|
2020 |
| 6. |
N. A. Kochetov, A. E. Sytschev, “Effect of $\mathrm{SiO}_2$ content and mechanical activation on $\mathrm{Ni}$–$\mathrm{Al}$–$\mathrm{SiO}_2$ combustion”, Fizika Goreniya i Vzryva, 56:5 (2020), 32–38 ; Combustion, Explosion and Shock Waves, 56:5 (2020), 520–526 |
8
|
| 7. |
M. L. Busurina, A. E. Sytschev, I. D. Kovalev, A. V. Karpov, N. V. Sachkova, “Thermal explosion in a $2\mathrm{Co}$–$\mathrm{Ti}$–$\mathrm{Al}$ system: combustion, phase formation, and properties”, Fizika Goreniya i Vzryva, 56:3 (2020), 78–85 ; Combustion, Explosion and Shock Waves, 56:3 (2020), 317–323 |
2
|
| 8. |
A. V. Aborkin, I. V. Saikov, V. D. Berbentsev, A. M. Ob'edkov, A. E. Sytschev, M. I. Alymov, “The use of gas extrusion for the synthesis of a high-strength composite based on a 5xxx series aluminum alloy strengthened with carbon nanostructures”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:5 (2020), 7–10 ; Tech. Phys. Lett., 46:3 (2020), 207–210 |
4
|
|
2019 |
| 9. |
N. A. Kochetov, A. E. Sytschev, “Effect of coal content and mechanical activation on the combustion of a $\mathrm{Ni}$–$\mathrm{Al}$–$\mathrm{C}$ system”, Fizika Goreniya i Vzryva, 55:6 (2019), 58–64 ; Combustion, Explosion and Shock Waves, 55:6 (2019), 686–691 |
12
|
|
2018 |
| 10. |
A. S. Shchukin, A. E. Sytschev, “Effect of a NiO additive on the interaction in a Ni–Al–W system in self-propagating high-temperature synthesis”, Fizika Goreniya i Vzryva, 54:4 (2018), 55–63 ; Combustion, Explosion and Shock Waves, 54:4 (2018), 433–441 |
3
|
| 11. |
A. V. Karpov, D. Yu. Kovalev, I. P. Borovinskaya, A. E. Sytschev, “Electrically conducting ceramics based on $\rm Al$–$\rm AlN$–$\rm TiB_2$”, TVT, 56:4 (2018), 543–547 ; High Temperature, 56:4 (2018), 527–531 |
2
|
|
2017 |
| 12. |
O. D. Boyarchenko, A. E. Sytschev, L. M. Umarov, A. S. Shchukin, I. D. Kovalev, M. A. Sichinava, “Structure and properties of the composite material obtained by thermal explosion of a mixture of $\mathrm{Ni}+\mathrm{Al}+\mathrm{Cr}_2\mathrm{O}_3$”, Fizika Goreniya i Vzryva, 53:1 (2017), 48–56 ; Combustion, Explosion and Shock Waves, 53:1 (2017), 41–48 |
5
|
| 13. |
D. Yu. Kovalev, M. A. Luginina, S. G. Vadchenko, S. V. Konovalikhin, A. E. Sychev, A. S. Shchukin, “Synthesis of a new MAX phase in the Ti–Zr–Al–C system”, Mendeleev Commun., 27:1 (2017), 59–60 |
10
|
|
2016 |
| 14. |
M. L. Busurina, L. M. Umarov, I. D. Kovalev, N. V. Sachkova, S. M. Busurin, S. G. Vadchenko, A. E. Sytschev, “Structure and phase formation in the Ti–Al–Nb system in the thermal explosion mode”, Fizika Goreniya i Vzryva, 52:6 (2016), 44–50 ; Combustion, Explosion and Shock Waves, 52:6 (2016), 659–664 |
4
|
|
2006 |
| 15. |
S. G. Vadchenko, V. I. Ponomarev, A. E. Sytschev, “Self-propagating high-temperature synthesis of porous Ti–Si–Al–C based materials”, Fizika Goreniya i Vzryva, 42:2 (2006), 53–60 ; Combustion, Explosion and Shock Waves, 42:2 (2006), 170–176 |
5
|
|
2004 |
| 16. |
A. E. Sytschev, A. G. Merzhanov, “Self-propagating high-temperature synthesis of nanomaterials”, Usp. Khim., 73:2 (2004), 157–170 ; Russian Chem. Reviews, 73:2 (2004), 147–159 |
61
|
|
1996 |
| 17. |
A. G. Merzhanov, A. S. Mukasyan, A. S. Rogachev, A. E. Sytschev, S. Hwang, A. Varma, “Combustion-front microstructure in heterogeneous gasless media (using as an example the 5Ti + 3Si system)”, Fizika Goreniya i Vzryva, 32:6 (1996), 68–81 ; Combustion, Explosion and Shock Waves, 32:6 (1996), 655–666 |
18
|
|
1986 |
| 18. |
V. A. Shcherbakov, A. E. Sytschev, A. S. Steinberg, “Outgassing macrokinetcs in SPS”, Fizika Goreniya i Vzryva, 22:4 (1986), 55–61 ; Combustion, Explosion and Shock Waves, 22:4 (1986), 437–443 |
16
|
|
|
| 19. |
Магнитные и термоэлектрические свойства сплавов на основе системы $\rm Fe$–$\rm Al$–$\rm Mn$, полученных методом самораспространяющегося высокотемпературного синтеза
TVT, Forthcoming paper |
|
| Organisations |
|
|