Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Peller, Vladimir Vsevolodovich

Total publications: 120 (120)
in MathSciNet: 106 (106)
in zbMATH: 93 (93)
in Web of Science: 60 (60)
in Scopus: 48 (48)
Cited articles: 69
Citations: 1218
Presentations: 14

Number of views:
This page:5749
Abstract pages:13672
Full texts:3931
References:1053
Peller, Vladimir Vsevolodovich
Professor
Doctor of physico-mathematical sciences
E-mail:
Keywords: self-adjoint operators; normal operators; Hankel operators; Toeplitz operators; trace formulae; Schatten - von Neumann classes; operator Lipschitz functions
UDC: 513, 513.8, 513.881, 517.5, 517.53, 517.948, 517.98, 519.28, 517.51

Subject:

operator theory; perturbation theory; Hankel and Toeplitz operators; multiple operator integrals; stationary processes

   
Main publications:
  1. V.V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 19:2 (1985), 37–51
  2. V.V. Peller, “Operatory Gankelya klassa S_p i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov”, Matem. sb., 113(155):4 (1980), 538–581
  3. V.V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003
  4. A.B. Aleksandrov and V.V. Peller, “Operator Hölder–Zygmund functions”, Advances in Math, 224 (2010), 910–966
  5. V.V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215

https://www.mathnet.ru/eng/person22838
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/194673
https://orcid.org/0000-0002-7414-7625
https://www.scopus.com/authid/detail.url?authorId=6603898611

List of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2024
1. A. B. Aleksandrov, V. V. Peller, “Functions of compact operators under trace class perturbations”, Algebra i Analiz, 36:1 (2024), 7–16  mathnet
2. V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1, 1–52  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus
3. A. B. Aleksandrov, V. V. Peller, “Haagerup tensor products and Schur multipliers”, Algebra i Analiz, 36:5 (2024), 70–85  mathnet

   2023
4. A.B. Aleksandrov and V.V. Peller, “Triangular projection on S_p, 0<p<1, and related inequalities”, Proc. Amer. Math. Soc., 151 (2023), 2559-2571  mathscinet
5. A. B. Aleksandrov, V. V. Peller, “Triangular projection on $\boldsymbol{S}_p,~0<p<1$, as $p$ approaches $1$”, Algebra i Analiz, 35:6 (2023), 1–13  mathnet

   2022
6. A.B. Aleksandrov and V.V. Peller, “Functions of perturbed commuting dissipative operators”, Math. Nachr., 295:6 (2022), 1042–1062  crossref  mathscinet  scopus 5

   2023
7. A. B. Aleksandrov, V. V. Peller, “Functons of perturbed pairs of noncommuting dissipative operator”, St. Petersburg Math. J., 34:3 (2023), 379–392  mathnet  crossref
8. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed noncommuting unbounded self-adjoint operators”, St. Petersburg Math. J., 34:6 (2023), 913–927  mathnet  crossref

   2022
9. A. B. Aleksandrov, V. V. Peller, “Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation”, Dokl. Math., 106:3 (2022), 407–411  mathnet  crossref  crossref  elib

   2020
10. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed pairs of non-commuting contractions”, Izv. Math., 84:4 (2020), 659–682  mathnet  crossref  crossref  zmath  adsnasa  isi  elib  scopus
11. A.B. Aleksandrov and V.V. Peller, “Functions of noncommuting operators under perturbation of class $S_p$”, Math. Nachr., 293 (2020), 847–860  crossref  mathscinet  isi  scopus
12. A.B. Aleksandrov and V.V. Peller, “Schur multipliers of Schatten–von Neumann classes $S_p$”, Journal Funct. Anal., 279 (2020), 108683  crossref  mathscinet  isi  scopus 4

   2019
13. M.M. Malamud, H. Neidhardt, V.V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276, (2019), 1575–1621  crossref  mathscinet  zmath  isi  scopus 12
14. A.B. Aleksandrov, V.V. Peller, “Dissipative operators and operator Lipschitz functions”, Proc. Amer. Math. Soc., 147:5 (2019) , 2081-2093  crossref  mathscinet  zmath  isi  scopus 4
15. V.V. Peller, “Functions of commuting contractions under perturbation”, Math. Nachr., 292 (2019) , 1151 - 1160  crossref  mathscinet  zmath  isi  scopus 6
16. A. B. Aleksandrov, V. V. Peller, D. S. Potapov, “On a Trace Formula for Functions of Noncommuting Operators”, Math. Notes, 106:4 (2019), 481–487  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2018
17. V. V. Peller, “An elementary approach to operator Lipschitz type estimates”, Tribute to Victor Havin: 50 Years with Hardy Spaces, 261, Birkhäuser, Basel, 2018, 395–416.  crossref  mathscinet  zmath  scopus
18. V. V. Peller, “Functions of triples of noncommuting self-adjoint operators under perturbations of class $\boldsymbol{S_p}$”, Proc. Amer. Math. Society, 146:4 (2018), 1699-1711  crossref  mathscinet  zmath  isi  scopus 5

   2017
19. A. B. Aleksandrov, V. V. Peller, “Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals”, Bulletin London Math. Soc., 49 (2017), 463–479  crossref  mathscinet  zmath  isi  elib  scopus 13
20. M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203  mathnet  crossref  crossref  isi  elib  elib  scopus
21. M. M. Malamud, H. Neidhardt, V. V. Peller, “A trace formula for functions of contractions and analytic operator Lipschitz functions”, C. R. Math. Acad. Sci. Paris, 355 (2017), 806–811  crossref  mathscinet  zmath  isi  scopus 3

   2016
22. A. B. Aleksandrov, V. V. Peller, “Krein's trace formula for unitary operators and operator Lipschitz functions”, Funct. Anal. Appl., 50:3 (2016), 167–175  mathnet  crossref  crossref  mathscinet  mathscinet  isi  elib  elib  scopus
23. A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  adsnasa  isi  elib  elib  scopus
24. V. V. Peller, “Comments on the paper N.J. Kalton and C. Le Merdy “Solution of a problem of Peller concerning similarity””, Nigel J. Kalton Selecta, V. 1, Contemporary Mathematicians, Birkhäuser, Basel, 2016, 335–338
25. V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6 (2016), 15–88  crossref  mathscinet  zmath  isi  elib  scopus 31
26. A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1–-52  crossref  mathscinet  zmath  isi  elib
27. A. B. Aleksandrov, V. V. Peller, “Functions of almost commuting operators and an extension of the Helton–Howe trace formula”, J. Funct. Anal., 271 (2016), 3300–3322  crossref  mathscinet  zmath  isi
28. V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215  crossref  mathscinet  zmath  isi  elib

   2015
29. A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of perturbed noncommuting self-adjoint operators”, C. R. Acad. Sci. Paris, Sér. I, 353 (2015), 209-–214  crossref  mathscinet  zmath  isi  scopus 2
30. A. B. Aleksandrov, V. V. Peller, “Almost commuting functions of almost commuting self-adjoint operators”, C. R. Acad. Sci. Paris, Sér. I, 353 (2015), 583–588  crossref  mathscinet  zmath  isi  scopus 3
31. A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators”, C.R. Acad. Sci. Paris, Sér. I, 353 (2015), 723–728  crossref  mathscinet  zmath

   2014
32. F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266 (2014), 5398–-5428  crossref  mathscinet  zmath  isi  elib  scopus 15

   2013
33. V. V. Peller, “Utilization of technology for mathematical talks”, Notices of the AMS, 60:2 (2013), 235–238

   2012
34. A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. London Math. Soc. (3), 105 (2012), 821-–851  crossref  mathscinet  zmath  isi  scopus 10
35. V. V. Peller, “Selected problems in perturbation theory”, Topics in complex analysis and operator theory, Contemp. Math., 561, Amer. Math. Soc., Providence, RI, 2012, 67–90  crossref  mathscinet  zmath  isi
36. F. L. Nazarov, V. V. Peller, “Functions of perturbed tuples of self-adjoint operators”, C.R. Acad. Sci. Paris, Sér. I, 350 (2012), 349–354  crossref  mathscinet  zmath  isi  scopus 2
37. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus

   2011
38. A. B. Aleksandrov, V. V. Peller, “Trace formulae for perturbations of class $\boldsymbol{S}_m$”, J. Spectral Theory,, 1 (2011), 1–26  crossref  mathscinet  zmath  isi  elib  scopus 12
39. A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of normal operators under perturbation”, Advances in Math., 226 (2011), 5216–5251  crossref  mathscinet  zmath  isi  scopus 27
40. A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261 (2011), 2741-–2796  crossref  mathscinet  zmath  isi  elib  scopus 15

   2010
41. A. B. Aleksandrov, V. V. Peller, “Operator Hölder–Zygmund functions”, Advances in Math., 224 (2010), 910–966  crossref  mathscinet  zmath  isi  scopus 39
42. A. B. Aleksandrov, V. V. Peller, “Functions of operators under perturbations of class $\boldsymbol{S}_p$”, J. Funct. Anal., 258 (2010), 3675–3724  crossref  mathscinet  zmath  isi  elib  scopus 31
43. V. V. Peller, “The behavior of functions of operators under perturbations”, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., 207, Birkhäuser, Basel, 2010, 287–324  crossref  mathscinet  zmath  isi 4
44. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59 (2010), 1451–1490  crossref  mathscinet  zmath  isi  elib  scopus 12
45. A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of perturbed normal operators”, C.R. Acad. Sci. Paris, Sér. I, 348 (2010), 553–558  crossref  mathscinet  zmath  isi  scopus 2

   2009
46. V. V. Peller, “Analytic approximation of matrix functions and dual extremal functions”, Proc. Amer. Math. Soc., 137 (2009), 205–210  crossref  mathscinet  zmath  isi  elib  scopus 2
47. F. L. Nazarov, L. Baratchart, V. V. Peller, “Analytic approximation of matrix functions in $L^p$”, J. Approx. Theory, 158 (2009), 242-278  crossref  mathscinet  zmath  isi  elib  scopus 6
48. V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 109–131  crossref  mathscinet  zmath
49. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed operators”, C.R. Acad. Sci. Paris, Sér. I, 347 (2009), 483–488  crossref  mathscinet  zmath  isi  scopus 8
50. F. L. Nazarov, V. V. Peller, “Lipschitz functions of perturbed operators”, C.R. Acad. Sci. Paris, Sér. I, 347 (2009), 857–862  crossref  mathscinet  zmath  isi  scopus 13

   2007
51. V. V. Peller, V. I. Vasyunin, “Analytic approximation of rational matrix functions”, Indiana Univ. Math. J., 56 (2007), 1913–1937  crossref  mathscinet  zmath  isi  elib  scopus 2
52. V. V. Peller, “On S. Mazur's problems 8 and 88 from the Scottish Book”, Stud. Math., 180 (2007), 191–198  crossref  mathscinet  zmath  isi  scopus 3

   2006
53. V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233 (2006), 515–544  crossref  mathscinet  zmath  isi  elib
54. St. Petersburg Math. J., 17:3 (2006), 493–510  mathnet  crossref  mathscinet  zmath  elib  elib

   2005
55. V. V. Peller, S. R. Treil, “Very badly approximable matrix functions}”, Selecta Math., 11 (2005), 127–154  crossref  mathscinet  zmath  isi  elib  scopus 4
56. V. V. Peller, “An extension of the Koplienko–Neidhardt trace formulae”, J. Funct. Anal., 221 (2005), 456–481  crossref  mathscinet  zmath  isi  elib
57. V. V. Peller, Operatory Gankelya i ikh prilozheniya, Sovremennaya matematika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2005 , 1026 pp.

   2004
58. A. B. Aleksandrov, V. V. Peller, “Distorted Hankel operators”, Indiana Univ. Math. J., 53 (2004), 925–940  crossref  mathscinet  zmath  isi  scopus 1

   2003
59. V. V. Peller, Hankel Operators and their Applications, Springer Monographs in Mathematics, Springer–Verlag, Berlin, 2003 , 784 pp.  crossref  mathscinet  zmath 299

   2002
60. A. B. Aleksandrov, V. V. Peller, “Hankel and Toeplitz-Schur multipliers”, Math. Ann., 324 (2002), 277–327  crossref  mathscinet  zmath  isi  scopus 18
61. A. B. Aleksandrov, S. Janson, V. V. Peller, R. Rochberg, “An interesting class of operators with unusual Schatten–von Neumann behavior”, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 61–149  mathscinet  zmath

   2001
62. R. B. Alexeev, V. V. Peller, “Unitary interpolants and factorization indices of matrix functions”, J. Funct. Anal., 179 (2001), 43-65  crossref  mathscinet  zmath  isi
63. R. B. Alexeev, V. V. Peller, “Invariance properties of thematic factorizations of matrix functions”, J. Funct. Anal., 179 (2001), 309-332  crossref  mathscinet  zmath  isi

   2000
64. V. V. Peller, “Regularity conditions for vectorial stationary processes”, Operator Theory: Advances and Applications, 113, Birkhäuser, Basel, 2000, 287-301  mathscinet  zmath
65. R. B. Alexeev, V. V. Peller, “Badly approximable matrix functions and canonical factorizations”, Indiana Univ. Math. J., 49 (2000), 1247–1285  crossref  mathscinet  zmath  isi 2

   1998
66. V. V. Peller, “An excursion into the theory of Hankel operators”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 65–120  mathscinet  zmath
67. V. V. Peller, “Factorization and approximation problems for matrix functions”, J. Amer. Math. Soc., 11 (1998), 751-770  crossref  mathscinet  zmath  isi
68. V. V. Peller, “Hereditary properties of solutions of the four block problem”, Indiana Univ. Math. J., 47 (1998), 177-197  crossref  mathscinet  zmath  isi  scopus

   1997
69. V. V. Peller, S. R. Treil, “Approximation by analytic matrix functions. The four-block problem”, J. Funct. Anal., 148 (1997), 191-228  crossref  mathscinet  zmath  isi
70. V. V. Peller, N. J.Young, “Continuity properties of best analytic approximations”, J. Reine und Angew. Math., 483 (1997), 1-22  crossref  mathscinet  zmath

   1996
71. V. V. Peller, N. J.Young, “Superoptimal approximation by meromorphic matrix functions”, Math. Proc. Camb. Phil. Soc., 119 (1996), 497-511  crossref  mathscinet  zmath  scopus 4
72. A. B. Aleksandrov, V. V. Peller, “Hankel operators and similarity to a contraction”, Int. Math. Res. Notices, 6 (1996), 263-275  crossref  mathscinet  zmath 16

   1995
73. A. M. Megretskii, V. V. Peller, S. R. Treil, “The inverse spectral problem for self-adjoint Hankel operators”, Acta Math., 174 (1995), 241-309  crossref  mathscinet  isi  scopus 33
74. V. V. Peller, N. J.Young, “Construction of superoptimal approximation”, Math. Control Signals Systems, 8 (1995), 497-511  crossref  mathscinet  isi  scopus 4
75. V. V. Peller, “Approximation by analytic operator-valued functions”, Harmonic Analysis and Operor Theory (Caracas, 1994), Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995, 431-438  crossref  mathscinet  zmath 3
76. V. V. Peller, S. R. Treil, “Superoptimal singular values and indices of infinite matrix functions”, Ind. Univ. Math. J., 44 (1995), 243-255  crossref  mathscinet  zmath 1

   1994
77. V. V. Peller, N. J.Young, “Superoptimal analytic approximations of matrix functions”, J. Funct. Anal., 120 (1994), 300-343  crossref  mathscinet  zmath  isi  scopus 5
78. V. V. Peller, N. J.Young, “Superoptimal singular values and indices of matrix functions”, Int. Eq. Oper. Theory, 20 (1994), 350-363  crossref  mathscinet  zmath  isi  scopus 5

   1993
79. V. V. Peller, “Functional calculus for a pair of almost commuting selfadjoint operators”, J. Funct. Anal., 112 (1993), 325-345  crossref  mathscinet  zmath  isi
80. V. V. Peller, “Invariant subspaces of Toeplitz operators with piecewise continuous symbols”, Proc. Amer. Math. Soc., 119 (1993), 171-178  crossref  mathscinet  zmath  isi  scopus 1
81. A. M. Megretskii, V. V. Peller, S. R. Treil, “Le problème inverse pour les opérateurs de Hankel”, Comptes Rendus Acad. Sci, Paris, Séries I, 317 (1993), 343-346  mathscinet  zmath

   1992
82. V. V. Peller, “Boundedness properties of the operators of best approximations by meromorphic functions”, Arkiv för Mat., 30 (1992), 331-343  crossref  mathscinet  zmath  isi  scopus 2

   1991
83. A. L. Vol'berg, V. V. Peller, D. V. Yakubovich, “A brief excursion into the theory of hyponormal operators”, Leningrad Math. J., 2:2 (1991), 211–243  mathnet  mathscinet  zmath
84. V. V. Peller, “Hankel operators and continuity properties of best approximation operators”, Leningrad Math. J., 2:1 (1991), 139–160  mathnet  mathscinet  zmath

   1990
85. V. V. Peller, “Hankel operators and multivariate stationary processes”, Operator theory: operator algebras and applications, Part 1, Proc. Sympos. Pure Math. (Durham, NH, 1988), 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, 357-371  crossref  mathscinet  zmath 7
86. V. V. Peller, “Hankel operators in the perturbation theory of unbounded selfadjoint operators”, Analysis and Partial Differential Equations. A Collection of Papers Dedicated to Misha Cotlar, Lecture Notes in Pure and Appl. Math.,, 122, Marcel Dekker, Inc., New York, 1990, 529-544  mathscinet  zmath

   1989
87. V. V. Peller, “When is a function of a Toeplitz operator close to a Toeplitz operator?”, Operator Theory, 42, Birkhäuser, Basel, 1989, 59-85  crossref  mathscinet  zmath 4

   1988
88. V. V. Peller, “Smoothness of Schmidt functions of smooth Hankel operators”, Function spaces and applications (Lund 1986), Lect. Notes Math., 1302, Springer-Verlag, Berlin, 1988, 237-246  crossref  mathscinet  zmath
89. V. V. Peller, “Wiener–Hopf operators on a finite interval and Schatten–von Neumann classes”, Proc. Amer. Math. Soc., 104 (1988), 479-486  crossref  mathscinet  zmath  isi  scopus 6

   1987
90. V. V. Peller, “Rational approximation in $L^p$ and Faber transforms”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, “Nauka”, Leningrad. Otdel., Leningrad, 1987, 70–75  mathnet
91. V. V. Peller, “For which $f$ does $A-B\in\boldsymbol{S}_p$ imply that $f(A)-f(B)\in\boldsymbol{S}_p$?”, Operator Theory, 24, Birkhäuser, Basel, 1987, 289-294  mathscinet  zmath
92. V. V. Peller, “Spectrum, similarity, and invariant subspaces of Toeplitz operators”, Math. USSR-Izv., 29:1 (1987), 133–144  mathnet  crossref  mathscinet  zmath

   1986
93. V. V. Peller, S .V. Khrushchev, “Hankel operators of Schatten – von Neumann class $\boldsymbol{S}_p$ and their applications to stationary processes and best approximations”: N. K. Nikolskii, Treatise on the shift operator, Springer-Verlag, Berlin, 1986, 359-454  mathscinet

   1985
94. V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123  mathnet  crossref  mathscinet  zmath  isi

   1987
95. V. V. Peller, “A remark on interpolation in spaces of vector functions”, J. Soviet Math., 37:5 (1987), 1357–1358  mathnet  crossref  mathscinet  zmath

   1984
96. V. V. Peller, “Hankel Schur multipliers and multipliers of $H^1$”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 113–119  mathnet  mathscinet  zmath
97. V.V. Peller, “Metricheskie svoistva usrednyayuschego proektora na mnozhestvo gankelevykh operatorov”, DAN SSSR, 278 (1984), 275-281  mathnet  mathscinet  zmath
98. V. V. Peller, “Estimates of functions of a Hilbert space operator, similarity to a contraction, and related function algebras”, 199 problems of linear and complex analysis, Lect. Notes in Math., 1043, Springer - Verlag,, Berlin, 1984, 199 - 204
99. V. V. Peller, “Estimates of operator polynomials in the Schatten – von Neumann classes $\boldsymbol{S}_{p}$”, 199 problems in linear and complex analysis, Lect. Notes Math., 1043, Springer-Verlag, Berlin, 1984, 205-208
100. S. V. Khrushchev, V. V. Peller, “Moduli of Hankel operators, Past and Future”, 199 problems of real and complex analysis, Lect. Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 92-97
101. V. V. Peller, “Iterates of Toeplitz operators”, 199 problems of linear and complex analysis, Lect. Notes Math., 1043, Springer-Verlag, Berlin, 1984, 269-270
102. V. V. Peller, “Nuclear Hankel operators acting between Hardy classes”, Operator Theory, 14, Birkhäuser, Basel, 1984, 213-220  mathscinet  zmath
103. V. V. Peller, “Metric properties of an averaging projector onto the set of Hankel matrices”, Dokl. Akad. Nauk SSSR, 278:2 (1984), 275–281  mathnet  mathscinet  zmath

   1985
104. V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494  mathnet  crossref  mathscinet  zmath

   1983
105. V. V. Peller, “Invariant subspaces for Toeplitz operators”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, “Nauka”, Leningrad. Otdel., Leningrad, 1983, 170–179  mathnet  mathscinet  zmath
106. V.V. Peller, “Continuity properties of the averaging projection onto the set of Hankel matrices”, J. Funct. Anal., 53 (1983), 64-73  crossref  mathscinet  zmath

   1982
107. V. V. Peller, S. V. Khrushchev, “Hankel operators, best approximations, and stationary Gaussian processes”, Russian Math. Surveys, 37:1 (1982), 61–144  mathnet  crossref  mathscinet  zmath  adsnasa  isi

   1987
108. V. V. Peller, “Rational approximation and smoothness of functions”, J. Soviet Math., 36:3 (1987), 391–398  mathnet  crossref  mathscinet  zmath

   1982
109. V.V. Peller, “Estimates of functions of power bounded operators on Hilbert space”, J. Oper. Theory, 7 (1982), 341-372  mathscinet  zmath
110. V.V. Peller, “Vectorial Hankel operators and related operators of the Schatten–von Neumann class ${\frak S}_{p}$”, Int. Equat. Oper. Theory, 5 (1982), 244-272  crossref  mathscinet  zmath  scopus 37

   1983
111. V. V. Peller, “Analogue of J. von Neumann's inequality, isometric dilation of contractions and approximation by isometries in spaces of measurable functions”, Proc. Steklov Inst. Math., 155 (1983), 101–145  mathnet  mathscinet  zmath

   1982
112. V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479  mathnet  crossref  mathscinet  zmath

   1980
113. V. V. Peller, “Gladkie gankelevy operatory i ikh prilozheniya (idealy ${\frak S}_p$, klassy Besova, sluchainye protsessy)”, DAN SSSR, 252:1 (1980), 43–48  mathnet  mathscinet  mathscinet  zmath 4

   1979
114. V. V. Peller, “Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators”, Math. Notes, 25:6 (1979), 464–471  mathnet  crossref  mathscinet  zmath  isi
115. V. V. Peller, “Applications of ultraproducts in operator theory. A simple proof of E. Bishop's theorem”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, “Nauka”, Leningrad. Otdel., Leningrad, 1979, 230–240  mathnet  mathscinet  zmath

   1978
116. V. V. Peller, “Approximations by isometries and V. I. Matsaev's hypothesis for absolute contractions of the space $L^p$”, Funct. Anal. Appl., 12:1 (1978), 29–38  mathnet  crossref  mathscinet  zmath

   1984
117. V. V. Peller, “14.4. Estimation of operator polynomials in Schatten–von Neumann classes”, J. Soviet Math., 26:5 (1984), 2167–2168  mathnet  crossref

   1978
118. V.V. Peller, “L'inégalité de von Neumann, la dilatation isométrique et l'approximation par isométries dans $L^{p}$”, C.R. de l'Académie des Sciences de Paris, sér. A,, 278 (1978), 311-314  mathscinet  zmath

   1981
119. V. V. Peller, “Estimates of operator polynomials on the space $L^p$ with respect to the multiplier norm”, J. Soviet Math., 16:3 (1981), 1139–1149  mathnet  crossref  mathscinet  zmath

   1976
120. V.V. Peller, “Analog neravenstva Dzh. fon Neimana dlya prostranstva $L^p$”, DAN SSSR, 231:3 (1976), 539–542  mathnet  mathscinet  mathscinet  zmath 1

Presentations in Math-Net.Ru
1. Поведение функций от операторов при относительно ограниченных и относительно ядерных возмущениях
V. V. Peller
Seminar on Operator Theory and Function Theory
May 13, 2024 17:30
2. Spectral shift functions for compressions and for dissipative operators
V. V. Peller
International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin
November 23, 2023 11:00   
3. Вещественные функции спектрального сдвига для сжатий и диссипативных операторов
V. V. Peller
Conference on Complex Analysis and its Applications
September 13, 2023 11:00   
4. Вещественные функции спектрального сдвига для сжатий
V. V. Peller
Seminar on Operator Theory and Function Theory
April 17, 2023 17:30
5. Поведение функций от пар некоммутирующих максимальных диссипативных операторов при возмущении
V. V. Peller

October 25, 2022 11:00
6. Треугольное проектирование в $S_p$ при $p<1$
V. V. Peller
Seminar on Operator Theory and Function Theory
October 3, 2022 17:30
7. Schur multipliers of the Schatten–von Neumann class $S_p$ for $0<p<1$.
V. V. Peller
International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin
October 15, 2021 11:00   
8. Оценки липшицева типа для функций от диссипативных операторов
V. V. Peller
Seminar on Operator Theory and Function Theory
February 15, 2021 17:30
9. Functions of commuting dissipative operators under their perturbation
V. V. Peller
V. I. Smirnov Seminar on Mathematical Physics
May 11, 2020 16:30   
10. Матричные мультипликаторы Шура класса Шатена - фон Неймана $S_p$.
V. V. Peller
Seminar on Operator Theory and Function Theory
March 16, 2020 17:30
11. Решение задачи Крейна и абсолютная непрерывность спектрального сдвига
V. V. Peller
Seminar on Theory of Functions of Real Variables
May 11, 2018 18:30
12. Функции возмущённых некоммутирующих операторов
V. V. Peller
Seminar on Operator Theory and Function Theory
January 19, 2015 17:30
13. Преподавание математики в США
V. V. Peller
Meetings of the St. Petersburg Mathematical Society
June 3, 2014 18:00
14. Формулы следов при возмущениях операторами класса Шаттена – фон Ноймана $S_m$
V. V. Peller
Seminar on Operator Theory and Function Theory
December 20, 2010 17:30

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024