01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date:
10.09.1947
E-mail:
,
Main publications:
Matematicheskie modeli sovmestnogo dvizheniya poverkhnostnykh i podzemnykh vod. Novosibirskii gosuniversitet, 1977, 77 s. (s Antontsevym S. N.)
Zadacha Stefana , Nauka, Sib.otd. Novosibirsk, 1986, 240 s.
The Stefan Problem, Walter de Gruyter, Berlin–New York, 1992, 244 p.
Evolution Equations and Lagrangian Coordinates (with S. Shmarev and V. Pukhnachev), Walter de Gruyter,
Berlin–New York, 1997, 307 p. \begin{thebibliography}{9}
\Bibitem{2}
\by A.M. Meirmanov
\book The Stefan Problem
\publ Walter de Gruyter
\yr 1992
\Bibitem{3}
\by A.M. Meirmanov, V.V.Pukhnachev and S. I. Shmarev
\book Evolution Equations and Lagrangian Coordinates
\publ Walter de Gruyter
\yr 1997
\Bibitem{4}
\by A. Meirmanov
\book Mathematical models for poroelastic flow
\publaddr Paris
\yr 2014
\Bibitem{5}
\by S. Antontsev, A. Meirmanov, V. Yurinsky
\paper A free-boundary problem for Stokes equations: classical solutions
\jour Interfaces and Free Boundaries
\yr 2000
\vol 2
\issue 4
\pages 413-424
A. M. Meirmanov, “On the classical solution of the macroscopic model of in-situ leaching of rare metals”, Izv. RAN. Ser. Mat., 86:4 (2022), 116–161; Izv. Math., 86:4 (2022), 727–769
2.
A. M. Meirmanov, “Two-scale expansion method in the problem of temperature oscillations in frozen soil”, Applied Mathematics & Physics, 54:1 (2022), 28–32
2020
3.
A. M. Meirmanov, O. V. Galtsev, “A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations”, Chebyshevskii Sb., 21:4 (2020), 140–151
4.
A. M. Meirmanov, O. A. Galtseva, V. E. Seldemirov, “On the Global-in-Time Existence of a Generalized Solution to a Free-Boundary Problem”, Mat. Zametki, 107:2 (2020), 229–240; Math. Notes, 107:2 (2020), 274–283
A. M. Meirmanov, O. V. Galtsev, S. A. Gritsenko, “On homogenized equations of filtration in two domains with common boundary”, Izv. RAN. Ser. Mat., 83:2 (2019), 142–173; Izv. Math., 83:2 (2019), 330–360
6.
A. M. Meirmanov, O. V. Galtsev, O. A. Galtseva, “The global-in-time existence of a classical solution for some free boundary problem”, Sibirsk. Mat. Zh., 60:2 (2019), 419–428; Siberian Math. J., 60:2 (2019), 325–333
A. M. Meirmanov, O. V. Galtsev, O. A. Galtseva, “Some free boundary problems arising in rock mechanics”, CMFD, 64:1 (2018), 98–130
8.
A. M. Meirmanov, S. A. Gritsenko, “Homogenization of the equations of filtration of a viscous fluid in two porous media”, Sibirsk. Mat. Zh., 59:5 (2018), 1145–1158; Siberian Math. J., 59:5 (2018), 909–921
2016
9.
A. M. Meirmanov, A. A. Gerus, S. A. Gritsenko, “Homogenisation of the isothermal acoustics models in the configuration elastic body–porous-elastic medium”, Mat. Model., 28:12 (2016), 3–19
10.
A. Meirmanov, S. Mukhambetzhanov, M. Nurtas, “Seismic in composite media: elastic and poroelastic components”, Sib. Èlektron. Mat. Izv., 13 (2016), 75–88
A. M. Meirmanov, S. A. Gritsenko, A. A. Gerus, “The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium»”, Sib. Èlektron. Mat. Izv., 13 (2016), 49–74
A. A. Gerus, S. A. Gritsenko, A. M. Meirmanov, “The deduction of the homogenized model of isothermal acoustics in a heterogeneous medium in the case of two different poroelastic domains”, Sib. Zh. Ind. Mat., 19:2 (2016), 37–46; J. Appl. Industr. Math., 10:2 (2016), 199–208
2015
13.
A. Meirmanov, N. Omarov, V. Tcheverda, A. Zhumaly, “Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model”, Sib. Èlektron. Mat. Izv., 12 (2015), 884–900
2012
14.
A. M. Meirmanov, I. V. Nekrasova, “Mathematical models of a hydraulic shock in a slightly viscous liquid”, Mat. Model., 24:5 (2012), 112–130; Math. Models Comput. Simul., 4:6 (2012), 597–610
Anvarbek Meirmanov, “Equations of liquid filtration in double porosity media as a reiterated homogenization of Stokes equations”, Trudy Mat. Inst. Steklova, 278 (2012), 161–169; Proc. Steklov Inst. Math., 278 (2012), 152–160
O. V. Galtsev, A. M. Meirmanov, “Numerical homogenization in the Rayleigh–Taylor problem of filtering two immiscible incompressible liquids”, Mat. Model., 23:10 (2011), 33–43
17.
A. M. Meirmanov, “The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible viscous liquids in compressible crack-pore media. Part II: The macroscopic description”, Mat. Model., 23:4 (2011), 3–22
A. M. Meirmanov, “The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part I: The microscopic description”, Mat. Model., 23:1 (2011), 100–114
A. M. Meirmanov, “Derivation of the equations of nonisothermal acoustics in elastic porous media”, Sibirsk. Mat. Zh., 51:1 (2010), 156–174; Siberian Math. J., 51:1 (2010), 128–143
A. M. Meirmanov, S. A. Gritsenko, “Derivation of the equations of diffusion and convection of an admixture”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 18, 73–86
2009
22.
A. M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, Tr. Semim. im. I. G. Petrovskogo, 27 (2009), 176–234; J. Math. Sci. (N. Y.), 163:2 (2009), 111–150
A. M. Meirmanov, “Equations of nonisothermal filtration in fast processes in elastic porous media”, Prikl. Mekh. Tekh. Fiz., 49:4 (2008), 113–129; J. Appl. Mech. Tech. Phys., 49:4 (2008), 614–628
24.
A. M. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Mat. Sb., 199:3 (2008), 45–68; Sb. Math., 199:3 (2008), 361–384
A. M. Meirmanov, “Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lamé Equations”, Trudy Mat. Inst. Steklova, 261 (2008), 210–219; Proc. Steklov Inst. Math., 261 (2008), 204–213
A. M. Meirmanov, N. V. Shemetov, “On the correctness of the phenomenological model of equilibrium
phase transitions in a deformable elastic medium”, Dokl. Akad. Nauk SSSR, 313:4 (1990), 843–845; Dokl. Math., 35:8 (1990), 734–735
1989
30.
I. G. Gets, A. M. Meirmanov, “Modeling crystallization of a binary alloy”, Prikl. Mekh. Tekh. Fiz., 30:4 (1989), 39–45; J. Appl. Mech. Tech. Phys., 30:4 (1989), 545–550
1987
31.
I. G. Gets, A. M. Meirmanov, N. V. Shemetov, “Phenomenological model of first-order phase transitions in a deformable elastic medium”, Prikl. Mekh. Tekh. Fiz., 28:6 (1987), 43–50; J. Appl. Mech. Tech. Phys., 28:6 (1987), 843–849
I. A. Kaliev, A. M. Meirmanov, “The Stefan problem with one space variable”, Dokl. Akad. Nauk SSSR, 285:4 (1985), 861–865
1984
33.
A. M. Meirmanov, “The structure of the generalized solution of the quasistationary one-dimensional Stefan problem”, Differ. Uravn., 20:5 (1984), 882–885
1983
34.
A. M. Meirmanov, “Structure of the generalized solution of the Stefan problem. Periodic solutions”, Dokl. Akad. Nauk SSSR, 272:4 (1983), 789–791
1982
35.
A. M. Meirmanov, “A problem on the advance of a contact discontinuity surface in the filtration of an immiscible compressible fluid (Verigin's problem)”, Sibirsk. Mat. Zh., 23:1 (1982), 85–102; Siberian Math. J., 23:1 (1982), 65–80
A. M. Meirmanov, “On a problem with free boundary for parabolic equations”, Mat. Sb. (N.S.), 115(157):4(8) (1981), 532–543; Math. USSR-Sb., 43:4 (1982), 473–484
A. M. Meirmanov, “Solvability of Verigin's problem in an exact formulation”, Dokl. Akad. Nauk SSSR, 253:3 (1980), 588–591
39.
A. M. Meirmanov, “On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations”, Mat. Sb. (N.S.), 112(154):2(6) (1980), 170–192; Math. USSR-Sb., 40:2 (1981), 157–178
S. N. Antontsev, A. M. Meirmanov, “Questions of correctness of a model of the simultaneous motion of surface and ground waters”, Dokl. Akad. Nauk SSSR, 242:3 (1978), 505–508